首页> 外文会议>AIAA SciTech forum and exposition >Optimization of the Blade-Dependent Switch Triggers for Reducing Mistuned Bladed Disk Vibration via Piezoelectric-Based Resonance Frequency Detuning
【24h】

Optimization of the Blade-Dependent Switch Triggers for Reducing Mistuned Bladed Disk Vibration via Piezoelectric-Based Resonance Frequency Detuning

机译:通过基于压电的共振频率失谐来减少刀片相关的开关触发器的优化,以减少错误调谐的刀片磁盘振动

获取原文

摘要

Turbomachinery bladed disks operate in highly stressed environments and are susceptible to failure induced by high-cycle fatigue. Unavoidable geometric and material variations between blades, referred to as blade mistuning, can confine vibration energy to a small number of blades and cause vibration magnitudes that may be significantly greater than that of the ideal, tuned system. As such, researchers have continually investigated numerous methods to reduce bladed disk vibration. One such method, termed resonance frequency detuning, employs piezoelectric materials to switch between available stiffness states to avoid resonance crossings and reduce vibration. A previous investigation employed RFD to reduce vibration in mistuned bladed disks; however, this investigation only considered a single switch from the open- (high stiffness) to the short-circuit (low stiffness) state. Although decreasing the computational expense and complexity of the analysis, considering only a single switch may not provide optimal performance, specifically for highly mistuned blades. As such, this paper extends the RFD approach by considering multiple switches between the two operating states, thus providing a more complete picture of RFD's performance potential. When considering harmonic excitation, an analytical investigation reveals that for a tuned blisk, there is only a single optimal switch that is primarily a function of the engine-order excitation and the electromechanical coupling; for a mistuned blisk, the optimal switches are blade dependent and primarily functions of the mistuning and the electromechanical coupling. When considering response to transient excitation, RFD requires a separate procedure to identify the optimal switches. This analysis incorporates a genetic algorithm to more rapidly identify these optimal switches that provide the potential for significant vibration reduction performance.
机译:涡轮机械叶片盘在高应力环境下​​运行,容易遭受高循环疲劳引起的故障。叶片之间不可避免的几何和材料变化(称为叶片不平衡)会将振动能量限制在少量叶片上,并导致振动幅度可能大大大于理想的调整系统。因此,研究人员一直在研究许多减少刀片式磁盘振动的方法。一种这样的方法,称为共振频率失谐,使用压电材料在可用的刚度状态之间切换,以避免共振越过并减少振动。先前的研究采用RFD来减少误磨的刀片式磁盘中的振动。但是,这项研究仅考虑了从断开(高刚度)到短路(低刚度)状态的单个切换。尽管减少了计算开销和分析复杂性,但仅考虑单个开关可能无法提供最佳性能,特别是对于高度混乱的刀片而言。这样,本文通过考虑两个工作状态之间的多个开关扩展了RFD方法,从而提供了更完整的RFD性能潜力图。当考虑谐波激励时,分析研究表明,对于调谐的叶盘,只有一个最佳开关,主要取决于发动机指令的激励和机电耦合。对于雾化的叶盘,最佳开关取决于叶片,并且主要起到雾化和机电耦合的作用。当考虑对瞬态激励的响应时,RFD需要一个单独的过程来确定最佳开关。该分析结合了遗传算法,可以更快地识别出这些最佳开关,这些开关可以提供显着的减振性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号