首页> 外文会议>AIAA SciTech forum and exposition >Design Approximation and Proof Test Methods for a Cellular Material Structure
【24h】

Design Approximation and Proof Test Methods for a Cellular Material Structure

机译:蜂窝材料结构的设计逼近和证明测试方法

获取原文

摘要

The Mission Adaptive Digital Composite Aerostructure Technology (MADCAT) project is to assess the feasibility of ultralight lattice structures for high performance space and aero applications, using building block based construction methods, and with primary potential benefits of system mass reduction over the duration of mission life cycles that can span both space and aero operation modes. As part of the project, an ultralight technology demonstrator was designed, built, and tested, with aerodynamic and structural mechanical overviews provided in prior work. This article details the first order design approximation method estimation used to set a preliminary design envelope and the corresponding proof load testing method for the final MADCAT demonstrator, as a notional optimized structural element with variable cross section. For the proof load testing, a complete built model was load tested under estimated critical loading conditions, with loads applied using a whiffletree system. Architected cellular materials represent a new frontier in material science, with potentially revolutionary benefits such as high specific stiffness in the ultralight density regime (< 10 kg/m~3). However, because most of these materials are made using additive manufacturing, they are limited in scale (<1m) due to size constraints of the 3D printing platform. A new approach is based on the reversible assembly of discrete lattice building blocks. This method has been employed to design and build a large scale (>1m) ultralight lattice structure with application as novel aircraft as part of the Mission Adaptive Digital Composite Aerostructure Technology (MADCAT) project. Prior to wind tunnel testing, the structure had to undergo non-destructive, full-scale tests to validate modeling predictions and ensure factors of safety. This paper will describe the required first order design approximation method estimation to set a preliminary design envelope and a corresponding proof load testing method for the final MADCAT demonstrator, as a notional optimized structural element with variable cross section. For the proof load testing, a complete built model was load tested underestimated critical loading conditions, with loads applied using a whiffletree system. This work presents the testing and validation of the largest ultralight lattice material structure built (2m in length), which represents a significant step towards full-scale integration of architected cellular materials into high performance space and aero applications.
机译:任务自适应数字复合航空结构技术(MADCAT)项目将使用基于构建块的构造方法评估超轻晶格结构在高性能空间和航空应用中的可行性,并在任务持续时间内减少系统质量的主要潜在好处可以跨越太空和航空运行模式的循环。作为该项目的一部分,设计,建造和测试了超轻技术演示器,并提供了先前工作中提供的空气动力学和结构力学概述。本文详细介绍了用于设置初始设计包络线的一阶设计近似方法估算以及最终MADCAT演示器的相应证明载荷测试方法,作为具有可变横截面的概念优化结构元素。对于验证载荷测试,在估计的关键载荷条件下对完整的构建模型进行了载荷测试,并使用whiffletree系统施加了载荷。蜂窝状建筑材料代表了材料科学的一个新领域,具有潜在的革命性优势,例如在超轻密度条件下(<10 kg / m〜3)的高比刚度。但是,由于大多数这些材料都是使用增材制造制成的,因此由于3D打印平台的尺寸限制,它们的尺寸受到限制(<1m)。一种新方法是基于离散晶格构件的可逆组装。该方法已被用于设计和建造大型(> 1m)超轻晶格结构,并将其作为任务自适应数字复合航空结构技术(MADCAT)项目的一部分应用于新型飞机。在进行风洞测试之前,该结构必须进行无损全面测试,以验证建模预测并确保安全因素。本文将描述为最终MADCAT演示器设置初步设计包络所需的一阶设计近似方法估计和相应的证明载荷测试方法,作为具有可变横截面的概念优化结构元素。对于验证载荷测试,在估计的关键载荷条件下对完整的构建模型进行了载荷测试,并使用whiffletree系统施加了载荷。这项工作介绍了已建成的最大的超轻晶格材料结构(长度为2m)的测试和验证,这是朝着将蜂窝结构材料全面集成到高性能空间和航空应用中迈出的重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号