首页> 外文会议>AIAA SciTech forum and exposition >Hybrid LES/RANS Simulation of a Premixed Ethylene-Fueled Dual-Mode Scramjet Combustor: Small Cavity Configuration
【24h】

Hybrid LES/RANS Simulation of a Premixed Ethylene-Fueled Dual-Mode Scramjet Combustor: Small Cavity Configuration

机译:预混合乙烯燃料双模超燃冲压燃烧器的混合LES / RANS模拟:小腔体配置

获取原文

摘要

Hydrocarbon fuels offer optimal high energy per volume for scramjet applications for sustained hypersonic flight but require additional residence time due to slower ignition delays (compared to hydrogen fuel). The injection of ethylene at the start of the isolator of a dual-mode scramjet combustor, operating in ramjet mode, allows sufficient mixing to achieve efficient, fully premixed, turbulent, hydrocarbon combustion. A cavity flame holder anchors the flame, supplying sufficient radicals to sustain a stable flame in the high-speed environment. Prior experimental/computational work has investigated the characteristics of various configurations of one such combustor at the University of Virginia Supersonic Combustion Facility (UVASCF) using coherent anti-Stokes Raman spectroscopy (CARS), particle image velocimetry (PIV), planar laser-induced fluorescence (PLIF) diagnostics, and hybrid large eddy simulation (LES) / Reynolds-averaged Navier-Stokes (RANS) modeling of combustor dynamics. This work investigates a new configuration with a smaller cavity extended into the center of the combustor with a strut and insert. The cavity is reduced in size to enable eventual direct numerical simulations (DNS) of the flame stabilization process. This work, however, focuses on modeling the full isolator / combustor geometry using a hybrid LES/RANS simulation strategy. PIV and PLIF diagnostics are compared with the simulations to analyze and characterize the conditions within the combustor, including flame structure, velocities, and pressure. The simulation results are analyzed to explain the influence of the shock train positioning on turbulence levels throughout the combustor and on the turbulent flame speed. The simulations show good agreement with the experimental data and with premixed turbulent combustion theory.
机译:碳氢化合物燃料可为超燃冲压发动机的应用提供最佳的高单位体积能量,以实现持续的高超音速飞行,但由于点火延迟较慢(与氢燃料相比),因此需要额外的停留时间。在以冲压喷射模式运行的双模超燃冲压燃烧器的隔离器开始处注入乙烯,可实现充分混合,从而实现有效的,完全预混合的湍流烃燃烧。空腔火焰固定器固定火焰,提供足够的自由基以在高速环境中维持稳定的火焰。先前的实验/计算工作已经使用相干反斯托克斯拉曼光谱法(CARS),颗粒图像测速仪(PIV),平面激光诱导荧光在弗吉尼亚大学超音速燃烧设施(UVASCF)上研究了一种这样的燃烧器的各种配置的特性。 (PLIF)诊断以及混合大涡模拟(LES)/雷诺平均Navier-Stokes(RANS)燃烧室动力学建模。这项工作研究了一种具有较小空腔的新结构,该空腔通过撑杆和插入件延伸到燃烧室的中心。减小空腔的尺寸,以实现火焰稳定过程的最终直接数值模拟(DNS)。但是,这项工作着重于使用混合LES / RANS仿真策略对整个隔离器/燃烧器的几何形状进行建模。将PIV和PLIF诊断与模拟进行比较,以分析和表征燃烧器内的状况,包括火焰结构,速度和压力。分析了仿真结果,以解释冲击波列的位置对整个燃烧室湍流度和湍流火焰速度的影响。模拟结果与实验数据和预混湍流燃烧理论吻合良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号