首页> 外文会议>IEEE Conference on Electrical Insulation and Dielectric Phenomena >Enhanced Thermal Conductive Boron Nitride/ Silicon Carbide/ Silicone Elastomer with Nonlinear Conductive Characteristic and Partial Discharge Resistance
【24h】

Enhanced Thermal Conductive Boron Nitride/ Silicon Carbide/ Silicone Elastomer with Nonlinear Conductive Characteristic and Partial Discharge Resistance

机译:具有非线性导电特性和局部放电电阻的增强型导热氮化硼/碳化硅/有机硅弹性体

获取原文

摘要

Wide bandgap power electronic devices with higher breakdown voltages, faster switching, and lower switching losses than silicon-based power devices will be widely used in high-temperature and high-voltage applications. Corresponding packaging materials are urgently required to have higher thermal conductivity and satisfactory insulating properties in wide bandgap power electronic modules. This study introduces a silicone elastomer (rubber) with micron and nano-sized boron nitride (BN) and silicon carbide (SiC) particles to improve thermal conductivity and partial discharge resistance. The thermal conductivity, polarization and depolarization current, and partial discharge were measured to investigate the effect of mixed micro-nanoparticles on thermal and electrical properties. Experimental results show that the composite material has a higher thermal conductivity than the original silicone elastomer. The conductive current of the composite expresses nonlinearity with the increase of load level. Regarding the trap density distribution, the composite's trap depth is generally reduced. The shallow trap density increases, whereas the deep trap density decreases with ascending load level. The partial discharge inception voltage of the composite is higher than the original silicone elastomer, and it increases as the load level rises, which may be explained by the local electric field decrease resulting from trapped charge diffusion around the high voltage electrode. The multiphase BN/ SiC/ silicone elastomer with proper load level has a higher thermal conductivity and better partial discharge resistance, indicating its advantages as packaging material to ease thermal and electrical stress in wide bandgap power electronic modules.
机译:与基于硅的功率器件相比,具有更高击穿电压,更快的开关速度和更低的开关损耗的宽带隙功率电子器件将广泛用于高温和高压应用中。迫切需要相应的包装材料在宽带隙电力电子模块中具有更高的导热性和令人满意的绝缘性能。这项研究介绍了一种硅橡胶弹性体(橡胶),其中包含微米级和纳米级的氮化硼(BN)和碳化硅(SiC)颗粒,以提高导热性和抗局部放电性。测量了热导率,极化和去极化电流以及局部放电,以研究混合的纳米微粒对热和电性能的影响。实验结果表明,该复合材料具有比原始有机硅弹性体更高的导热率。复合材料的导电电流随着负载水平的增加而表现出非线性。关于陷阱密度分布,通常减小复合物的陷阱深度。浅陷阱阱密度增加,而深陷阱阱密度随着负载水平的增加而降低。复合材料的局部放电起始电压高于原始的有机硅弹性体,并且随着负载水平的升高而增加,这可以解释为局部电场减小,这是由于在高压电极周围捕获的电荷扩散导致的。具有适当负载水平的多相BN / SiC /有机硅弹性体具有更高的导热性和更好的抗局部放电性,这表明它作为包装材料的优点是可以缓解宽带隙电力电子模块中的热应力和电应力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号