首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >ASSESSMENT OF LONG TERM CREEP USING STRAIN RATE MATCHING FROM THE STEPPED ISOSTRESS METHOD
【24h】

ASSESSMENT OF LONG TERM CREEP USING STRAIN RATE MATCHING FROM THE STEPPED ISOSTRESS METHOD

机译:用逐步等应力法进行应变率匹配评估长期蠕变。

获取原文

摘要

Creep testing is an ongoing need, particularly with the development of new candidate alloy systems for advanced energy systems. The conventional creep test (CT) is regarded as a proven method to gather creep data however, the test is impractical due to being real-time: lasting up to 105 hours to characterize the service of long-lived turbomachinery components. Accelerated methods to gather the long-term creep properties of materials are needed to reduce the time to qualification of new materials. The time-temperature-stress-superposition principle (TTSSP) and the derivative time-temperature superposition principle (TTSP), time-stress superposition principle (TSSP), stepped isothermal method (SIM), and stepped isostress method (SSM) are accelerated creep tests (ACT) commonly used to predict the long-term creep behaviors of polymers and composites. The TTSP and TSSP tests require multiple specimen tested at various temperatures/stresses whereas the SIM and SSM tests employ a single specimen where temperature/stress are periodically step increased until rupture. The stepped creep deformation curve can then be time and strain shifted to produce a master creep curve. While these ACTs are useful tools to predict long-term creep, the drawback is the lack of mathematical laws to determine the virtual start time and time shift factors, especially for different materials. In this paper, a new self-calibration approach is developed and compared to existing SSM data for Kevlar 49. This new approach focuses on matching the creep strain rates between stress steps and fitting the data to a master curve using a modified theta projection model. This is performed using a MATLAB code consisting of five subroutines. The first subroutine takes the stress, time, and creep strain from SSM/SIM tests, and segregates the data intro arrays corresponding to each stress level. The second subroutine finds the constants for the modified theta projection model for each stress level. The third subroutine performs a time shift adjustment using creep strain rate matching. The fourth subroutine calculates the accelerated time of rupture. The last subroutine generates accelerated creep versus time plots. Kevlar 49 SSM data is gathered from literature and run through the MATLAB code. The master curves generated from the MATLAB are compared to the conventional creep curve of Kevlar 49 as well as the master curve gathered from literature in order to validate the feasibility of this new approach. The goal of this project is to vet if the self-calibration approach can produce results similar to the reference calibration approach.
机译:蠕变测试是一个持续的需求,特别是随着先进能源系统的新候选合金系统的开发。传统的蠕变测试(CT)被认为是一种收集蠕变数据的行之有效的方法,但是由于它是实时的,因此不切实际:持续长达105个小时以表征长期使用寿命的涡轮机械部件。需要加快方法来收集材料的长期蠕变特性,以减少新材料合格的时间。时间-温度-应力叠加原理(TTSSP)和导数时间-温度-叠加原理(TTSP),时间-应力叠加原理(TSSP),阶梯等温法(SIM)和阶梯等温法(SSM)是加速蠕变通常用于预测聚合物和复合材料长期蠕变行为的试验(ACT)。 TTSP和TSSP测试需要在不同的温度/应力下测试多个样本,而SIM和SSM测试则使用单个样本,其中温度/应力会周期性地逐步升高直至破裂。然后可以将阶跃蠕变变形曲线随时间和应变移动以生成主蠕变曲线。尽管这些ACT是预测长期蠕变的有用工具,但缺点是缺乏确定虚拟起始时间和时移因子的数学定律,尤其是对于不同的材料。在本文中,开发了一种新的自校准方法,并将其与Kevlar 49的现有SSM数据进行了比较。该新方法着重于匹配应力步之间的蠕变应变速率,以及使用经修改的theta投影模型将数据拟合到主曲线上。这是使用包含五个子例程的MATLAB代码执行的。第一个子例程从SSM / SIM测试中获取应力,时间和蠕变应变,并隔离与每个应力水平相对应的数据输入阵列。第二个子例程为每个应力水平找到修改的theta投影模型的常数。第三子例程使用蠕变应变率匹配执行时移调整。第四个子例程计算加速的破裂时间。最后一个子例程生成加速的蠕变与时间的关系图。 Kevlar 49 SSM数据是从文献中收集的,并通过MATLAB代码运行。将MATLAB生成的主曲线与Kevlar 49的常规蠕变曲线以及从文献中收集的主曲线进行比较,以验证这种新方法的可行性。该项目的目标是审查自校准方法是否可以产生与参考校准方法相似的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号