首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >MULTI-FIDELITY ANALYSIS OF ACOUSTIC STREAMING IN FORCED CONVECTION HEAT TRANSFER
【24h】

MULTI-FIDELITY ANALYSIS OF ACOUSTIC STREAMING IN FORCED CONVECTION HEAT TRANSFER

机译:强制对流换热中声流的多尺度分析

获取原文

摘要

The behavioral characteristics of thermal boundary layer dictate the relative efficiency of forced convection heat transfer. This research effort is related to the detailed analysis of the temporal evolution of thermal boundary layer under periodic excitations. In presence of oscillations, a distinct thin Stokes layer is formed inside the attached boundary layer, which interacts nonlinearly with the mean flow in the near wall region. This interaction leads to modification of temporally averaged flow fields, commonly known as acoustic streaming. As a result, the aero-thermal wall gradients are modified leading to significant changes in wall shear stress and heat flux. However, the small spatial scales and the inherent unsteady nature of streaming has presented challenges for prior numerical investigations, preventing the identification of optimal parameters. In order to address this void in numerical framework, the development of a three-tier numerical approach is presented. As a first layer of fidelity, a laminar model is developed for fluctuations and streaming flow calculations in laminar flows subjected to travelling wave disturbances. This technique is an extension of the Lin's method to traveling wave disturbances of various speeds (absent of previously employed assumptions), along with inclusion of energy equation. With low computational cost, this level of abstraction is intended to identify the broad parameter space that yield desirable heat transfer alterations. At the next level of fidelity, 2D U-RANS simulations are conducted across both laminar and turbulent flow regimes. This is geared towards extending the parameter space obtained from laminar model to turbulent flow conditions. As the third level of fidelity, temporally and spatially resolved DNS simulations are conducted to simulate the application relevant compressible flow environment. The exemplary findings indicate that in certain parameter space, both enhancement and reduction in heat transfer can be obtained through acoustic streaming. Moreover, the extent of heat transfer modulations is greater than alterations in wall shear, thereby surpassing Reynolds analogy.
机译:热边界层的行为特性决定了强制对流换热的相对效率。这项研究工作与对周期性激发下热边界层的时间演化的详细分析有关。在存在振荡的情况下,在附着的边界层内部会形成一个明显的斯托克斯薄层,该斯托克斯层与近壁区域中的平均流量非线性地相互作用。这种相互作用导致时间平均流场的修改,通常称为声流。结果,改变了空气热壁梯度,从而导致壁切应力和热通量的显着变化。然而,小的空间尺度和流的固有的不稳定特性已经对先前的数值研究提出了挑战,从而妨碍了对最佳参数的识别。为了解决数值框架中的这个空白,提出了一种三层数值方法的发展。作为保真度的第一层,开发了一种层流模型,用于对经受行波干扰的层流中的波动和水流进行计算。该技术是Lin方法扩展到各种速度的行波干扰(先前采用的假设不存在)的扩展,同时还包含了能量方程。在较低的计算成本的情况下,此抽象级别旨在标识产生期望的传热更改的宽泛的参数空间。在保真度的下一个层次上,将在层流和湍流状态下进行2D U-RANS仿真。这是为了将从层流模型获得的参数空间扩展到湍流条件。作为保真度的第三级,进行了时间和空间解析的DNS模拟,以模拟与应用程序相关的可压缩流环境。示例性发现表明,在某些参数空间中,可以通过声流获得热传递的增强和降低。而且,传热调制的程度大于壁切变的变化,从而超过了雷诺兹的类比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号