首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINE ENCLOSURES WITH MACHINE LEARNING
【24h】

IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINE ENCLOSURES WITH MACHINE LEARNING

机译:机器学习识别燃气轮机外壳中的通风不良区域

获取原文

摘要

Ventilation systems are used in gas turbine packages to control the air temperature, to protect electrical instrumentation and auxiliary items installed inside the enclosure and to ensure a proper dilution of potentially dangerous gas leakages. These objectives are reached only if the ventilation flow is uniformly distributed in the whole volume of the package, providing a good air flow quality as prescribed by international codes such as ISO 21789. To evaluate the effectiveness of the ventilation design, numerical computations are performed for several purposes, one of which is the identification of poorly ventilated portions of the enclosure. In fact, it is essential to accurately detect the regions which are less ventilated, since they could be prone to the accumulation of an accidental fuel gas leak. There are different approaches to identify these portions, such as decay regression or inlet source analysis, that require unsteady simulations of the flow field inside the package. The present work discusses the implementation of a new methodology using machine learning and artificial neural networks (ANN) to detect the poorly ventilated regions where a gas cloud can accumulate. The concentration of fuel gas is estimated starting from a steady-state computation without running a more expensive unsteady computation. The entire process is built around an accurate training of the ANN using a proper set of simpler test-cases that have been identified to match the characteristics of the gas turbine enclosure. During the training phase accuracy and overfitting of the ANN were monitored to ensure robustness of the method. The procedure is then applied to a real case scenario and the results are presented in this paper highlighting the main advantages of this approach respect to a conventional use of CFD analysis. Computations of the flow fields are carried out using OpenFOAM with RANS and U-RANS approaches, while the ANN is developed and trained in Python.
机译:燃气轮机包装中使用通风系统来控制空气温度,保护安装在外壳内的电气仪表和辅助设备并确保适当稀释潜在的危险气体泄漏。仅当通风流均匀地分布在包装的整个体积中,并提供国际标准(例如ISO 21789)规定的良好空气质量时,才能达到这些目标。为评估通风设计的有效性,将对有几个目的,其中之一是确定外壳通风不良的部分。实际上,准确检测通风不良的区域至关重要,因为这些区域可能容易发生意外的燃气泄漏。有多种方法可用于识别这些部分,例如衰减回归或入口源分析,这些方法需要对包装内部的流场进行不稳定的模拟。本工作讨论了使用机器学习和人工神经网络(ANN)来检测气体云可以积聚的通风不良区域的新方法的实现。从稳态计算开始估算燃料气体的浓度,而无需运行更昂贵的不稳定计算。整个过程是基于对ANN的精确训练而建立的,该过程使用一组适当的简单测试用例进行了确定,这些用例已被确定与燃气轮机外壳的特征相匹配。在训练阶段,对ANN的准确性和过度拟合进行了监视,以确保该方法的鲁棒性。然后将该程序应用于实际案例,并在本文中给出结果,突出显示此方法相对于常规CFD分析使用的主要优势。流域的计算是使用带有RANS和U-RANS方法的OpenFOAM进行的,而ANN是用Python开发和训练的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号