首页> 外文会议>Device Research Conference >Negative Capacitance in Organic Light-Emitting Diodes: Implications for Display Applications
【24h】

Negative Capacitance in Organic Light-Emitting Diodes: Implications for Display Applications

机译:有机发光二极管中的负电容:显示应用的含义

获取原文

摘要

As Organic Light Emitting Diodes (OLEDs) enter the consumer market, their frequency dependent charge transport characteristics are becoming more important. When these devices are rapidly cycled on and off, as in display applications, any inductive nature in the transport characteristics will lead to non-optimal device performance. While this inductive-type transport, or negative capacitance (NC), was reported in the literature only recently [1,2], similar characteristics have been seen in the electroluminescence transients of OLEDs for some time [3]. In our initial work [1], it was demonstrated that dangling bonds, surface dipoles, and defects at the anode/hole transport layer (HTL) interface create a series of charge traps that dominate the low-frequency response, thus masking the inductive nature of OLEDs. Once this interface was modified through the addition of a thin adhesion promoting layer, charge trapping did not occur, and the underlying behavior could be monitored using impedance spectroscopy. An equivalent circuit for hetero-layered OLEDs was developed, consisting of a parallel resistor and capacitor in series with a parallel resistor and inductor that models the charge transport through the electron transport layer (ETL) and HTL, respectively. In this work the robustness of the model is tested through impedance spectroscopy characterization as a function of applied bias and layer thickness modifications. Correlations with current-voltage measurements reveal that the NC occurs once trap assisted space charge limited transport is reached. Through variation of the organic layer thicknesses, the magnitude of the NC response can be intentionally tuned. In particular, increasing the thickness of the electron transport layer increases the NC magnitude from 2.5% to 11%, whereas hole transport layer thickness modifications have little effect on the magnitude of NC. Subsequent modeling indicates that alterations in the distribution of the electric field across the individual organic layers account for the observed variations in NC. In addition, it is found that the time constants for the inductive elements of the model increase with applied bias, unlike their capacitive counterparts, suggesting that an accumulation of charge at the organic/organic interface is responsible for both the increasing NC and redistribution of the applied field. The ability to modify time constants and magnitude of NC may provide an avenue to increase display efficiency.
机译:随着有机发光二极管(OLED)进入消费市场,它们的频率依赖电荷传输特性变得越来越重要。当这些设备快速循环并关闭时,如在显示应用中,传输特性中的任何归纳性质都会导致非最佳设备性能。虽然这种感应式传送或负电容(NC)在文献中仅在最近[1,2]中,但在OLED的电致发光瞬变中已经看到了类似的特性[3]。在我们的初始工作[1]中,证明阳极/空穴传输层(HTL)界面处的悬空粘合,表面偶极物和缺陷产生了一系列占据低频响应的电荷陷阱,从而掩盖了感应性Oleds。一旦通过添加薄的粘合促进层修改该界面,没有发生电荷俘获,并且可以使用阻抗光谱监测潜在的行为。开发出用于杂层OLED的等效电路,由并联电阻器和电容器,与并联电阻器和电感器分别通过电子传输层(ETL)和HTL的电感器组成。在这项工作中,通过阻抗光谱表征测试模型的稳健性,作为应用偏置和层厚度修改的函数。与电流电压测量的相关性揭示了一旦达到陷阱辅助空间充电有限的传输就会发生NC。通过有机层厚度的变化,可以有意调整NC响应的幅度。特别地,增加电子传输层的厚度从2.5%增加到11%,而空穴传输层厚度修饰对NC的幅度几乎没有影响。随后的建模表明,在各个有机层上分布的电场分布的改变占据了NC的观察到的变化。另外,发现模型的电感元件的时间常数与施加的偏置不同,与它们的电容对应物不同,表明有机/有机界面处的电荷累积是对增加的NC和再分布的负责。应用领域。修改时间常数和NC的幅度的能力可以提供一种提高显示效率的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号