首页> 外文会议>IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization >Progress and Challenges in Kinetic Plasma Modeling for High Power Microwave Devices
【24h】

Progress and Challenges in Kinetic Plasma Modeling for High Power Microwave Devices

机译:大功率微波设备动力学等离子体建模的进展与挑战

获取原文

摘要

We review progress in kinetic plasma modeling by electromagnetic particle-in-cell (EM-PIC) algorithms on unstructured grids. These algorithms are implemented in modular CONPIC and BORPIC C++ codes which integrate a matrix-free explicit finite-element (FE) Maxwell solver based on a parallel sparse-approximate inverse (SPAI) algorithm and a first-principles charge-conserving scatter algorithm to transfer charged particle information into dynamic variables on the grid. The Maxwell solver of the EM-PIC algorithm utilizes a mixed FE basis and discretizes the time-dependent coupled first-order Maxwell's system explicitly. The explicit solver approximates the inverse FE system matrix (“mass” matrix) using hierarchical sparsity patterns based on the sparsity pattern of the original matrix. The resulting algorithm effectively accounts for multiscale plasma phenomena. We discuss the application of the developed EM-PIC algorithm to the analysis of laboratory plasmas, vacuum electronic devices for generation of high power microwave signals, and RF electronics multipactor effects in harsh space environments.
机译:我们通过非结构化网格上的电磁粒子在细胞内(EM-PIC)算法审查动态等离子体建模的进展。这些算法以模块化CONPIC和BORPIC C ++代码实现,它们基于并行稀疏近似逆(SPAI)算法和第一性原理电荷守恒分散算法,集成了无矩阵显式有限元(FE)麦克斯韦求解器,以进行转移将粒子信息加载到网格上的动态变量中。 EM-PIC算法的麦克斯韦求解器利用混合有限元基础,并明确离散了时间相关的耦合一阶麦克斯韦系统。显式求解器基于原始矩阵的稀疏度模式,使用分层稀疏度模式来近似逆FE系统矩阵(“质量”矩阵)。所得算法有效地解决了多尺度等离子体现象。我们讨论了开发的EM-PIC算法在实验室等离子体,用于产生高功率微波信号的真空电子设备以及在恶劣的空间环境中产生的射频电子多重效应的分析中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号