首页> 外文会议>International Conference on Electronics Packaging >Surface-modification technology by using Radical Shower Treatment (RST) process in submicron interposer for Fan-out packaging applications.
【24h】

Surface-modification technology by using Radical Shower Treatment (RST) process in submicron interposer for Fan-out packaging applications.

机译:通过在亚微米中介层中使用自由基淋浴处理(RST)工艺进行表面修饰技术,以实现扇出式包装应用。

获取原文
获取外文期刊封面目录资料

摘要

In recent years, discussion on power consumption and latency of GPU used for AI application has started. In order to realize further high-speed processing and low power consumption of the GPU processing a huge amount of data, it is necessary to consider the packaging structure of the GPU [1]. The current GPU package structure is based on the package substrate using flip chip PoP (Package on Package) technology and Si interposer. In this structure applied, the wiring distance is increased due to the structural restriction of signal transmission through the Si interposer on the package substrate, which is the cause of the increase in power consumption and latency. Therefore, the packaging structure around the Si interposer has been focused, and expected structures that does not use the Si interposer have been proposed [2]. A method of directly forming fine wiring layers which plays a role of RDL (Redistributed Layer) by using a photosensitive insulation material on a build-up substrate without using a Si interposer has been reported [3]. Furthermore, in view of the high frequency trend of the signal frequency, the development of glass-epoxy materials having low Df (dielectric loss constant) and low Dk (dielectric constant) material properties as a build-up film is proceeding [4]. It is expected that it will be a more effective method to effectively utilize the characteristics of low Df and low Dk and to form fine wiring on the build-up layer using semiconductor fine wiring technology. For future high density packaging, plasma dry etching technology aiming fabrication of multilayer wiring on build-up film has been developed [5].In this paper, the results of microfabrication of build-up thickness of 5 μm are reported for the purpose of fabricating fine wiring on build-up film using dry process. This technology has been developed as one of new SiP (System in Package) technologies for realizing future heterogeneous integration. The process results of dry etching and Cu electroplating are described. In order to adapt to chip mounting, the size of the wiring formed in the build-up layer is targeted at line / space = 2 μm / 2 μm. The reason for using Si substrate instead of mold panel is because it is suitable for use of expensive NGD (known good die). In Si semiconductor packaging, very stable technology corresponding to Si substrate of 300 mm size has been established up to today. And, for Cu fine wiring formation on a build-up film using a dry process, it is also necessary to ensure sufficient adhesion between the Cu seed layer and the build-up film. In order to manufacture highly reliable fine Cu wiring, it is necessary to evaluate the controllability of good adhesion of the seed Cu layer / glass epoxy film interface. Fluorine compound gas is used for dry etching of build-up film. There are residues containing fluorine on the surface to be etched. These residual fluorine compounds reduce the adhesion between the build-up film and the seed layer for Cu plating. Therefore, it is necessary to construct a method of dry process to improve the adhesion to the seed layer by eliminating the effect of residual fluorine compound. The change in the surface free energy before the seed sputtering process is compared with the peel test result of the Cu seed layer. Basic investigation results on the surface condition of the build-up film and the adhesion of the seed film are reported.
机译:近年来,关于用于AI应用程序的GPU的功耗和延迟的讨论已经开始。为了实现GPU处理大量数据的进一步高速处理和低功耗,有必要考虑GPU的封装结构[1]。当前的GPU封装结构基于使用倒装芯片PoP(封装上封装)技术和Si中介层的封装基板。在所应用的这种结构中,由于通过封装基板上的Si中介层的信号传输的结构限制,布线距离增加,这是功耗和等待时间增加的原因。因此,人们关注了硅中介层周围的封装结构,并提出了不使用硅中介层的预期结构[2]。已经报道了一种在不使用硅中介层的情况下通过在增层基板上使用光敏绝缘材料直接形成起RDL(再分布层)作用的精细布线层的方法[3]。此外,鉴于信号频率的高频趋势,发展了具有低Df(介电损耗常数)和低D的玻璃环氧树脂材料。 k (介电常数)材料性能随着堆积膜的发展而发展[4]。期望它将是一种更有效地利用低D特性的方法。 f 和低D k 并使用半导体精细布线技术在堆积层上形成精细布线。对于未来的高密度封装,已经开发了针对在堆积膜上制造多层布线的等离子干蚀刻技术[5]。在本文中,为了达到制造目的,报道了堆积厚度为5μm的微细加工结果。使用干法在堆积膜上进行精细布线。该技术已开发为实现未来异构集成的新SiP(系统级封装)技术之一。描述了干法刻蚀和电镀铜的工艺结果。为了适应芯片安装,在堆积层中形成的布线的尺寸以线/间隔=2μm/2μm为目标。使用Si衬底代替模板的原因是因为它适合于使用昂贵的NGD(已知的优质模具)。迄今为止,在Si半导体封装中,已经建立了与300mm尺寸的Si衬底相对应的非常稳定的技术。并且,为了使用干法在堆积膜上形成Cu微细配线,还必须确保Cu籽晶层与堆积膜之间的足够的粘附性。为了制造高度可靠的精细Cu布线,必须评估种子Cu层/环氧玻璃膜界面的良好附着力的可控性。氟化合物气体用于干法腐蚀沉积膜。在要蚀刻的表面上存在含氟的残留物。这些残留的氟化合物降低了堆积膜与用于镀铜的籽晶层之间的粘附力。因此,有必要构建一种干法工艺,以通过消除残留的氟化合物的影响来改善对晶种层的粘附性。将晶种溅射过程之前的表面自由能的变化与Cu晶种层的剥离测试结果进行了比较。报道了关于堆积膜的表面状况和籽晶膜的粘附性的基础研究结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号