首页> 外文会议>ASME turbo expo: turbomachinery technical conference and exposition >The Use of Blended Blade and End Wall in Compressor Cascade: Optimization Design and Flow Mechanism
【24h】

The Use of Blended Blade and End Wall in Compressor Cascade: Optimization Design and Flow Mechanism

机译:叶片叶片和端壁混合在压缩机叶栅中的使用:优化设计和流动机理

获取原文

摘要

Nowadays, the flow field at the compressor is more and more complex with the increasing of the aerodynamic loading. The complex flow in the endwall regions is thus key to aerodynamic blockage, loss production, and finally its performance deterioration. The design of Blended Blade and End Wall (BBEW) contouring technology had been proved to be useful in delaying, reducing, and eliminating the corner separation in the compressor. The BBEW technology can adjust the dihedral angle between the suction and the endwall in 30% of the spanwise easily, which is different with the fillet. However, the design of the BBEW always relies on the experiences of the designers, and the effective design results cannot be the optimal result. This paper presents an optimization design method for the BBEW technology, and analyses the flow mechanism of the BBEW design. Firstly, the parameters for the BBEW design is simplified as two, one is the maximum blended width, the other is the axial position of the maximum blended width. The optimal result can be obtained through the response surface method. Secondly, based on the optimization method, this paper make an optimization BBEW design at the suction side of a NACA65 linear compressor cascade with the turning angle 42 degrees. The numerical results show that the optimal BBEW design can eliminate the boundary layer separation at the corner intersection region, and reduce the suction side separation. When the incidence angle is 0 degrees, the BBEW technology can reduce the total pressure loss coefficient by 5%, and reduce the aerodynamic blockage coefficient by 14%. The aerodynamic performance of the cascade shows a more obvious improvement with the BBEW design at a larger incidence. The total pressure loss coefficient of the cascade is reduced by 20% at 15 degrees incidence. The numerical study shows that the design with the BBEW can control the axial development of the dihedral angle between the suction side and the endwall, which can eliminate the boundary layer separation at the corner intersection region. What's more, the BBEW technology can produce a pressure gradient at the axial position of the maximum blended width, and value of the pressure gradient in proportion to the maximum blended width. This pressure gradient enhance the kinetic energy of the low energy fluid at the endwall region, which is consist of the secondary cross flow, thus elevating the capability to withstand the adverse pressure gradient, and improve the suction side separation around the trailing edge.
机译:如今,随着空气动力学负载的增加,压缩机的流场变得越来越复杂。因此,端壁区域中的复杂流动是气动阻塞,损失产生以及最终其性能下降的关键。事实证明,叶片和端壁混合(BBEW)轮廓技术的设计可用于延迟,减少和消除压缩机的转角分离。 BBEW技术可以轻松地将吸力和端壁之间的二面角调整为翼展方向的30%,这与圆角不同。但是,BBEW的设计始终依赖于设计者的经验,有效的设计结果不能成为最佳结果。本文提出了一种BBEW技术的优化设计方法,并分析了BBEW设计的流程机理。首先,BBEW设计的参数简化为两个,一个是最大混合宽度,另一个是最大混合宽度的轴向位置。最佳结果可以通过响应面法获得。其次,基于最优化方法,对旋转角为42度的NACA65线性压缩机叶栅的吸力侧进行了优化的BBEW设计。数值结果表明,最佳的BBEW设计可以消除拐角相交区域的边界层分离,并减小吸力侧分离。当入射角为0度时,BBEW技术可将总压力损失系数降低5%,并将空气动力阻塞系数降低14%。 BBEW设计在更大的入射角时,级联的空气动力学性能显示出更明显的改善。级联的总压力损失系数在15度入射时降低了20%。数值研究表明,采用BBEW的设计可以控制吸力侧与端壁之间二面角的轴向展开,从而消除了拐角相交区域的边界层分离。而且,BBEW技术可以在最大混合宽度的轴向位置产生压力梯度,并且压力梯度的值与最大混合宽度成比例。该压力梯度增强了低能量流体在端壁区域的动能,该动能由二次横流组成,因此提高了承受不利压力梯度的能力,并改善了后缘周围的吸力侧分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号