首页> 外文学位 >Cascade flow simulation and measurement for the study of axial compressor loss mechanism.
【24h】

Cascade flow simulation and measurement for the study of axial compressor loss mechanism.

机译:级联流模拟和测量,用于研究轴流压缩机的损失机理。

获取原文
获取原文并翻译 | 示例

摘要

The flow field of axial-flow turbomachines, such as compressors and turbines, can be characterized as complex and three-dimensional (3-D) in nature. The accurate prediction of stage efficiency is still one of the most challenging engineering problems in turbomachinery design, due primarily to the complexity of the associated flow field. Historically, major improvements in turbomachinery component efficiency have come at a cost since these turbomachinery units have often been tested on expensive full-scale rotating prototype models. The data obtained from these full-scale tests can be, on the other hand, quite difficult to analyze. These full-scale test data usually provide good empirical information, but are quite often difficult to use for the analytical prediction of design efficiency. An alternative approach for the turbomachinery flow field analysis is to use a “cascade” model. Cascade is a simplified planar model representing a turbomachinery main flow passage at a specified spanwise location in the blade airfoil. Using a cascade model, detailed flow field characteristics in two-dimensional (2-D) blade-to-blade flow of the turbomachinery main flow passage can be investigated by deliberately excluding the complex 3-D viscous flow phenomena. Utilizing experimental measurement from a newly developed water table cascade model as well as cascade numerical simulation of computational fluid dynamics (CFD), a systematic and detailed investigation into axial compressor loss mechanism has been conducted. In order to accurately predict the stage efficiency of 3-D turbomachines, it is quite important to understand the details of associated physical mechanism of loss in 2-D cascade models. Traditionally, turbomachinery losses in both cascade and actual turbomachines have often been quantified by the drop in total (or stagnation) pressure across the stage. This quantification has long been known as an inconvenient approach for design, since the coefficient of loss based on this “pressure loss” depends on Mach number. The more universal quantification of “energy loss” has recently received much research attention, and it is the major focus in the present study. In this relatively new concept, turbomachinery losses are quantified by “generation of entropy” due to irreversible thermodynamic processes associated with viscous flow phenomena. The advantage of this approach is that the loss coefficient based on entropy generation is independent of Mach number. (Abstract shortened by UMI.)
机译:轴流式涡轮机(例如压缩机和涡轮机)的流场本质上可以描述为复杂的三维(3-D)。由于相关流场的复杂性,对级效率的准确预测仍然是涡轮机械设计中最具挑战性的工程问题之一。从历史上看,涡轮机械部件效率的重大提高是有代价的,因为这些涡轮机械单元经常在昂贵的全尺寸旋转原型模型上进行测试。另一方面,从这些全面测试获得的数据可能很难分析。这些全面的测试数据通常可以提供良好的经验信息,但是通常很难用于设计效率的分析预测。涡轮机械流场分析的另一种方法是使用“级联”模型。级联是简化的平面模型,表示在叶片翼型中指定的翼展方向位置处的涡轮机械主流通道。使用级联模型,可以通过有意排除复杂的3-D粘滞流动现象来研究涡轮机主流动通道的二维(2-D)叶片到叶片流动中的详细流场特性。利用新开发的地下水位梯级模型的实验测量结果以及计算流体动力学(CFD)的梯级数值模拟,对轴流式压缩机的损失机理进行了系统而详细的研究。为了准确预测3-D涡轮机的级效率,了解2-D级联模型中相关的物理损耗机理的细节非常重要。传统上,级联和实际涡轮机中的涡轮机损失通常通过跨级的总(或停滞)压力下降来量化。由于基于这种“压力损失”的损失系数取决于马赫数,这种量化一直以来被认为是一种不方便的设计方法。最近,对“能量损失”进行更普遍的量化已经引起了很多研究关注,这是本研究的重点。在这个相对较新的概念中,由于与粘性流动现象相关的不可逆热力学过程,涡轮机械损失可以通过“熵的产生”来量化。这种方法的优点是基于熵生成的损耗系数与马赫数无关。 (摘要由UMI缩短。)

著录项

  • 作者

    Hayashibara, Shigeo.;

  • 作者单位

    Wichita State University.;

  • 授予单位 Wichita State University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号