首页> 外文会议>AIAA/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >Analysis of detonation structures with hydrocarbon fuels for application towards rotating detonation engines
【24h】

Analysis of detonation structures with hydrocarbon fuels for application towards rotating detonation engines

机译:用于旋转爆震发动机的含碳氢化合物燃料的爆震结构分析

获取原文

摘要

Rotating Detonation Engines (RDEs) provide a promising approach to increasing efficiency of gas turbine combustors by utilizing detonation-driven combustion process. While RDEs have been studied extensively in the past, much of this work has focused on the use of hydrogen as fuel. In order to develop RDEs for power generation applications, it is necessary to understand the physics of hydrocarbon detonation. This study utilizes detailed chemical kinetics to simulate a sequence of hydrocarbon-based canonical RDE configurations. The cases emulate ethylene and methane detonation in air with varying degrees of hydrogen dilution as well as a range of operating conditions. The results indicate the while ethylene-based detonations are not significantly affected by the addition of hydrogen, methane mixtures exhibit large changes to the detonation structure. In particular, the critical pressure at which heat release reaches a peak changes to lower values as the hydrogen concentration in the reactant mixture is increased. Detailed comparisons with one-dimensional profìles and the impact of back pressure on the detonation and post-detonation flow are analyzed. Further, profiles of species extracted from the simulations are compared with one-dimensional detonation profiles. Comparisons with theoretical models for thrust and specific impulse are also provided. It is established that the use of detailed chemical kinetics provides a reliable approach to assessing the performance characteristics of RDEs.
机译:旋转爆震发动机(RDE)通过利用爆轰驱动的燃烧过程,为提高燃气轮机燃烧器的效率提供了一种有前途的方法。尽管过去已经对RDE进行了广泛的研究,但许多工作集中在使用氢作为燃料。为了开发用于发电的RDE,有必要了解碳氢化合物爆轰的物理原理。这项研究利用详细的化学动力学来模拟一系列基于碳氢化合物的规范RDE配置。这些案例模拟了氢气和空气稀释程度不同以及一系列操作条件下的空气中乙烯和甲烷的爆炸。结果表明,虽然基于氢的乙烯爆炸没有显着影响,但甲烷混合物的爆炸结构却发生了很大变化。特别地,随着反应混合物中氢浓度的增加,放热达到峰值的临界压力改变为较低的值。分析了与一维轮廓的详细比较以及背压对爆炸和爆炸后流动的影响。此外,将从模拟中提取的物种轮廓与一维爆轰轮廓进行比较。还提供了与推力和比冲理论模型的比较。已经确定,使用详细的化学动力学提供了一种可靠的方法来评估RDE的性能特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号