首页> 外文会议>AIAA/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >Impact of population balance modeling on the prediction of cryogenic cavitation in aerospace propulsion systems
【24h】

Impact of population balance modeling on the prediction of cryogenic cavitation in aerospace propulsion systems

机译:人口平衡模型对航空航天推进系统低温空化预测的影响

获取原文

摘要

The present work aims to investigate the influence of bubble size distribution and nucleation on the modeling of cryogenic cavitating nitrogen flow on hydrofoils. The Eulerian homogeneous mixture approach has been used, consisting in a mass transfer model which is based on the combination of a two-phase incompressible unsteady solver with a Volume of Fluid (VOF) interface tracking method. The interfacial mass transfer rates have been computed by means of an extended Schnerr-Sauer model based on the Rayleigh-Plesset equation. Thermal effects have been introduced by means the activation of the energy equation and the latent heat source terms plus an optional convective heat source term. The dependency of the saturation conditions to the temperature has been defined by means of Antoine-like equations. Based on the Classical Nucleation Theory (CNT), the homogeneous nucleation has been introduced in combination with the transport, the coalescence and the breakup of the nuclei, by coupling the Population Balance Equation/Extended Quadrature-Based Method of Moments (PBE-EQBMM) with the CFD model. The PBE model provided the prediction of the fields of the nuclei density and the nuclei diameter, which affect directly the vapor production/destruction rates predicted by the CFD model. Results showed that the nucleation model alone produced a reduction of the temperature drop inside the vapor cavity, and a warming of the wake downstream the vapor cavity. By implementing the models of the coalescence and the breakup of the nuclei, the vapor cavity and the nucleation region extended consistently, due to the increased number of nuclei both in the wake and inside the vapor cavity, where a reduction of the nuclei diameter was also estimated.
机译:目前的工作旨在调查气泡尺寸分布和成核作用对水翼型空化氮深空流建模的影响。已使用欧拉均匀混合方法,该方法包含在传质模型中,该模型基于两相不可压缩的非定常求解器与流体体积(VOF)界面跟踪方法的组合。界面传质速率已通过基于Rayleigh-Plesset方程的扩展Schnerr-Sauer模型进行了计算。通过激活能量方程式和潜热源项以及可选的对流热源项来引入热效应。饱和条件对温度的依赖性已通过类似于Antoine的方程式定义。基于经典成核理论(CNT),通过结合种群平衡方程/基于矩量的扩展矩量方法(PBE-EQBMM),引入了均匀成核与核的传输,合并和破裂的组合CFD模型。 PBE模型提供了核密度和核直径场的预测,这直接影响了CFD模型预测的蒸汽产生/破坏速率。结果表明,单独的成核模型降低了蒸气腔内部的温度下降,并降低了蒸气腔下游的尾流。通过实现核的合并和破裂模型,由于尾流和内部的核数目增加,蒸气腔和成核区域一致地扩展,其中核直径也减小了估计的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号