首页> 外文会议>ASME international mechanical engineering congress and exposition >NONLINEAR DYNAMICS AND CONTROL OF ROTORS OPERATING WITHIN THE CLEARANCE GAPS OF MAGNETIC BEARING SYSTEMS
【24h】

NONLINEAR DYNAMICS AND CONTROL OF ROTORS OPERATING WITHIN THE CLEARANCE GAPS OF MAGNETIC BEARING SYSTEMS

机译:磁轴承系统间隙内的转子非线性动力学与控制

获取原文

摘要

Under normal operation a rotor spinning within an active magnetic bearing system will be levitated and hence rotor-stator contact conditions do not exist. In such a case, external disturbances and inherent unbalance will cause rotor responses that are maintained by the magnetic bearing control system to be within the clearance gap. However, magnetic bearings have limited dynamic load capacity due to magnetic material field saturation. Hence large external disturbances may be sufficient to cause the clearance gap to become closed and result in rotor-stator contact. A touchdown bearing is usually incorporated as a sacrificial stator component to protect the expensive rotor, magnetic bearing and sensor components. Once contact has been made, rotor dynamic conditions may ensue resulting in persistent rotor bouncing or rubbing limit cycle responses. Prolonged exposure to these severe dynamics will cause touchdown bearing degradation and require regular replacement. A clear aim is therefore to restore contact-free levitation through available control capability in an efficient manner. This paper provides an analysis to gain an understanding of the uncontrolled rotor/touchdown contact dynamics. These will then be used to guide the control options that are available to restore contact-free levitation. The use of magnetic bearing control is appropriate if the required control forces are within saturation limits. It is also possible to actuate touchdown bearings and destabilize persistent rotor dynamic contact conditions. For example, piezo-based actuation offers larger control forces than those from magnetic bearing systems.
机译:在正常运行情况下,将在主动磁轴承系统内悬浮转子,因此不存在转子-定子接触条件。在这种情况下,外部干扰和固有的不平衡会导致由磁轴承控制系统保持的转子响应处于间隙之内。但是,由于磁性材料的磁场饱和,磁性轴承的动载荷能力有限。因此,较大的外部干扰可能足以导致间隙变得闭合并导致转子与定子的接触。通常将接地轴承作为牺牲定子组件,以保护昂贵的转子,磁性轴承和传感器组件。接触后,可能会出现转子动态状况,从而导致转子持续弹跳或摩擦极限循环响应。长时间暴露于这些严重的动态条件下会导致着陆轴承性能下降,需要定期更换。因此,一个明确的目标是通过有效的控制功能来恢复无接触悬浮。本文提供了一个分析,以了解不受控的转子/着陆接触动力学。然后,这些将用于指导可用于恢复无接触悬浮的控制选项。如果所需的控制力在饱和极限范围内,则使用电磁轴承控制是合适的。也有可能操纵着陆轴承并破坏持续的转子动态接触条件。例如,基于压电的致动器提供的控制力要大于来自电磁轴承系统的控制力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号