首页> 外文会议>ASME international mechanical engineering congress and exposition >JOINT TORQUE CONTROL OF A COLLABORATIVE ROBOT BASED ON ACTIVE DISTURBANCE REJECTION WITH THE CONSIDERATION OF ACTUATOR DELAY
【24h】

JOINT TORQUE CONTROL OF A COLLABORATIVE ROBOT BASED ON ACTIVE DISTURBANCE REJECTION WITH THE CONSIDERATION OF ACTUATOR DELAY

机译:考虑主动延迟的基于主动扰动抑制的协同机器人关节转矩控制

获取原文

摘要

The application of a robot manipulator to the task of parts assembling or collaboration with human workers requires compliant control and intrinsic safety. As a result, it is necessary to exert accurate torque on each joint of the robot through torque sensing and implementing closed-loop joint torque control. This torque servo system is required to track reference torque signals while operating under the influence of motor friction, flexibility of the harmonic drive, noise from the sensor, robot dynamics modelling error and other unknown certainties, resulting in large control efforts. This paper focuses on providing better compliance control for collaborative robots and proposes a joint torque controller design under development with active disturbance rejection concept. The controller is designed through a novel extended state observer to estimate and compensate for the unmodelled dynamics of the system, nonlinearly variable motor friction, and other uncertainties. Then, a simple proportional differential controller is designed to produce control law. In spite of the remarkable performance in dealing with the mechanical dynamics of the joint actuator, the original controller does not work well with the electrical factor of the joint actuator due to the limited current loop bandwidth in the hardware of motor and driver. To eliminate the detrimental effect of the time delay in current servo, a predictive output method based on a nonlinear tracking differentiator (TD) is used to improve the controller within the framework of active disturbance rejection control. Both simulations and experiments are conducted on a prototype one degree of freedom manipulator with a joint torque sensor. The results demonstrate the enhancement of both the system stability and disturbance rejection performances. Based on the proper treatment of actuator delay, the dominant effect of the motor friction and the flexibility of the harmonic drive has been reduced to insignificance. Moreover, the proposed controller is easy to implement because the explicit dynamic model of the system is not required.
机译:将机器人操纵器应用于零件组装或与人类工人协作的任务需要合规的控制和本质安全性。结果,有必要通过扭矩传感在机器人的每个关节上施加准确的扭矩,并执行闭环关节扭矩控制。在电动机摩擦,谐波驱动的灵活性,传感器发出的噪声,机器人动力学建模误差和其他未知因素的影响下运行时,此转矩伺服系统需要跟踪参考转矩信号。本文着重于为协作机器人提供更好的顺应性控制,并提出了一种具有主动干扰抑制概念的联合扭矩控制器设计。该控制器通过新颖的扩展状态观察器进行设计,以估计和补偿系统的非模型动力学,非线性可变的电机摩擦以及其他不确定性。然后,设计了一个简单的比例微分控制器来产生控制律。尽管在处理关节致动器的机械动力学方面表现出众,但由于电动机和驱动器硬件中有限的电流环路带宽,原始控制器无法与关节致动器的电因子一起很好地工作。为了消除电流伺服中的时间延迟的有害影响,基于非线性跟踪微分器(TD)的预测输出方法用于在主动干扰抑制控制的框架内改进控制器。仿真和实验均在带有关节扭矩传感器的原型一自由度操纵器上进行。结果表明,系统稳定性和干扰抑制性能均得到提高。在对执行器延迟进行适当处理的基础上,电动机摩擦的主要作用和谐波驱动器的灵活性已降低到微不足道的程度。而且,由于不需要系统的显式动态模型,因此所提出的控制器易于实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号