首页> 外文会议>AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference;AIAA SciTech Forum >Flutter Prediction Based on Dynamic Eigen Decomposition of Flight Data with Limited Actuators and Sensors
【24h】

Flutter Prediction Based on Dynamic Eigen Decomposition of Flight Data with Limited Actuators and Sensors

机译:基于有限执行器和传感器的飞行数据动态本征分解的颤振预测

获取原文

摘要

Typically, during the design, analysis, flight test phases aircraft flutter boundaries are computed using the p-k iterations, k iterations, p iterations, or eigenvalue analysis, all of which require computationally expensive and numerically sensitive procedures. In this work, based on the concept of the Dynamic Eigen Decomposition (DED) and a frequency domain stability theorem, a new flutter prediction methodology is introduced and extended for applications to flight flutter test (FFT). It is shown that the dynamic eigenmodes of the aeroelastic system can be formulated such that they become an intrinsic property independent of dynamic pressure. This makes it possible to predict the aeroelastic instability by simply extrapolating the corresponding dynamic eigenvalues obtained at a low dynamic pressure. The methodology, however, needs a major modification for FFT where the actuators and sensors are limited in numbers and locations. In particular, it is necessary to make up for the insufficient actuators by numerically generating extra responses. The proposed scheme is demonstrated using computational simulations of the Goland Wing with non-collocated and collocated sensors/actuators. It is shown that the new approach can yield very accurate flutter predictions with limited actuators if a sufficient number of sensors are utilized. The flutter information attainable includes flutter mode shape as well as critical flutter dynamic pressure and frequency.
机译:通常,在设计,分析过程中,使用p-k迭代,k迭代,p迭代或特征值分析来计算飞行测试阶段的飞机颤振边界,所有这些都需要计算量大且数值敏感的过程。在这项工作中,基于动态本征分解(DED)的概念和频域稳定性定理,引入了一种新的颤振预测方法,并将其扩展到飞行颤振测试(FFT)中。结果表明,可以制定气动弹性系统的动态本征模,使其成为独立于动态压力的固有特性。通过简单地外推在低动态压力下获得的相应动态特征值,就可以预测气动弹性不稳定性。但是,该方法需要对FFT进行重大修改,其中执行器和传感器的数量和位置受到限制。特别是,有必要通过数值生成额外的响应来弥补执行器不足的问题。使用具有未并置和并置的传感器/执行器的Goland机翼的计算仿真来论证所提出的方案。结果表明,如果使用了足够数量的传感器,这种新方法在执行器有限的情况下可以产生非常准确的抖动预测。可获得的颤动信息包括颤动模式形状以及临界颤动动压力和频率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号