首页> 外文会议>International Joint Conference on Neural Networks >Subject-Specific Convolutional Neural Networks for Accelerated Magnetic Resonance Imaging
【24h】

Subject-Specific Convolutional Neural Networks for Accelerated Magnetic Resonance Imaging

机译:特定主题的卷积神经网络用于加速磁共振成像

获取原文

摘要

Magnetic Resonance Imaging (MRI) is one of the leading modalities for medical imaging, providing excellent soft-tissue contrast without exposure to ionizing radiation. Despite continuing advances in MRI, long scan times remain a major limitation in clinical applications. Parallel imaging is a technique for scan time acceleration in MRI, which utilizes the spatial variations in the reception profiles of receiver coil arrays to reconstruct images from undersampled Fourier space, i.e. k-space. One of the most commonly used parallel imaging techniques employs interpolation of missing k-space information by using linear shift-invariant convolutional kernels. These kernels are trained on a limited amount of autocalibration signal (ACS) for each scan. We propose a novel method for parallel imaging,Robust Artificial-neural-networks for k-space Interpolation (RAKI), which uses scan-specific convolutional neural networks (CNNs) to perform improved k-space interpolation. Three-layer CNNs are trained using only scan-specific ACS data, alleviating the need for large training databases. The proposed method was tested in ultra-high resolution brain MRI and quantitative cardiac MRI, acquired with various acceleration rates. Improved noise resilience as compared to existing parallel imaging methods was observed for high acceleration rates or in the presence of low signal-to-noise ratio (SNR). Furthermore, RAKI successfully reconstructed images for quantitative cardiac MRI, even when using the same CNN across images with varying contrasts. These results indicate that RAKI achieves improved noise performance without overfitting to specific image contents, and offers great promise for improved acceleration in a wide range of MRI applications.
机译:磁共振成像(MRI)是医学成像的主要方式之一,可在不暴露于电离辐射的情况下提供出色的软组织对比度。尽管MRI取得了持续的进步,但是长扫描时间仍然是临床应用中的主要限制。并行成像是用于MRI中的扫描时间加速的技术,其利用接收器线圈阵列的接收轮廓中的空间变化来从欠采样的傅立叶空间(即,k空间)重建图像。最常用的并行成像技术之一是通过使用线性位移不变卷积核来对丢失的k空间信息进行插值。这些内核在每次扫描时都使用有限数量的自动校准信号(ACS)进行训练。我们提出了一种用于并行成像的新方法,即用于k空间插值的鲁棒人工神经网络(RAKI),该方法使用特定于扫描的卷积神经网络(CNN)来执行改进的k空间插值。仅使用特定于扫描的ACS数据即可对三层CNN进行培训,从而减少了对大型培训数据库的需求。所提出的方法已在超高分辨率脑部MRI和定量心脏MRI中进行了测试,并以不同的加速度进行了采集。与现有的并行成像方法相比,在高加速速率或低信噪比(SNR)的情况下,观察到了更高的噪声弹性。此外,即使跨对比度不同的图像使用相同的CNN,RAKI也可以成功地重建图像以进行定量心脏MRI检查。这些结果表明,RAKI在不过度适合特定图像内容的情况下实现了改进的噪声性能,并为在广泛的MRI应用中提高加速度提供了广阔前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号