首页> 外文会议>International Conference on Electromagnetics in Advanced Applications >Applications of Adjoint Solutions for Predicting and Analyzing Numerical Error of Forward Solutions Based on Higher Order Finite Element Modeling
【24h】

Applications of Adjoint Solutions for Predicting and Analyzing Numerical Error of Forward Solutions Based on Higher Order Finite Element Modeling

机译:基于高阶有限元建模的伴随解在正解数值误差预测与分析中的应用

获取原文

摘要

Summary form only given. The fi nite element method (FEM) for discretizing partial differential equations in electromagnetics is an extremely powerful and versatile general numerical methodology for electromagnetic (EM) fi eld modeling and computation in microwave engineering. This paper addresses numerical error estimation, model sensitivity prediction, and adaptive mesh refinement in the context of FEM solutions to EM scattering problems. The paper explains the concept of the adjoint operator and describes applications of adjoint solutions for predicting and analyzing numerical error of forward solutions based on higher order FEM modeling, with a perfectly matched layer (PML) boundary conditions for domain truncation. We present examples of application of an adjoint operator to quantify sensitivity of a quantity of interest (QoI) to perturbations in an input parameter in three-dimensional (3-D) higher order FEM-PML EM scattering computation, where we use the sensitivity information to predict the QoI over the parameter domain. In a large variety of illustrative one-dimensional (1-D) higher order FEM-PML EM scattering problems, we compute the error estimate from the numerical forward and adjoint solutions on an element -by element basis and analyze element -wise contribution to the total error in a given QoI from the forward solution. We then discuss the usefulness of this information for adaptive mesh refinement, considering both h- and p -refinements. We demonstrate that developing efficient strategies for adaptive mesh refinement requires accounting for local cancellation of the element contributions to the error. We show that adjoint methods present a useful technique toward a posteriori error estimation and adaptive mesh refinement for the FEM computation of EM scattering.
机译:仅提供摘要表格。用于离散化电磁中偏微分方程的有限元方法(FEM)是微波工程中电磁(EM)场建模和计算的一种非常强大且用途广泛的通用数值方法。本文在有限元解决电磁散射问题的背景下,解决了数值误差估计,模型灵敏度预测和自适应网格细化的问题。本文解释了伴随算子的概念,并描述了伴随解在基于高阶FEM建模和域截断的完美匹配层(PML)边界条件的预测和分析正解的数值误差中的应用。我们在三维(3-D)高阶FEM-PML EM散射计算中提供了一个伴随运算符来量化感兴趣量(QoI)对输入参数扰动的灵敏度的应用示例,在此我们使用灵敏度信息预测参数域的QoI。在大量说明性的一维(1-D)高阶FEM-PML EM散射问题中,我们在逐个元素的基础上根据数值正解和伴随解计算了误差估计,并分析了对前向解决方案在给定QoI中的总误差。然后,我们在考虑h和p细化的情况下讨论该信息对自适应网格细化的有用性。我们证明开发用于自适应网格细化的有效策略需要考虑对元素对误差的贡献的局部抵消。我们表明,伴随方法为EM散射的FEM计算提供了一种对后验误差估计和自适应网格细化的有用技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号