首页> 外文会议>IEEE/RSJ International Conference on Intelligent Robots and Systems >Vehicle Rebalancing for Mobility-on-Demand Systems with Ride-Sharing
【24h】

Vehicle Rebalancing for Mobility-on-Demand Systems with Ride-Sharing

机译:带乘车共享的按需移动系统的车辆平衡

获取原文

摘要

Recent developments in Mobility-on-Demand (MoD) systems have demonstrated the potential of road vehicles as an efficient mode of urban transportation Newly developed algorithms can compute vehicle routes in real-time for batches of requests and allow for multiple requests to share vehicles. These algorithms have primarily focused on optimally producing vehicle schedules to pick up and drop off requests. The redistribution of idle vehicles to areas of high demand, known as rebalancing, on the contrary has received little attention in the context of ride-sharing. In this paper, we present a method to rebalance idle vehicles in a ride-sharing enabled MoD fleet. This method consists of an algorithm to optimally partition the fleet operating area into rebalancing regions, an algorithm to determine a real-time demand estimate for every region using incoming requests, and an algorithm to optimize the assignment of idle vehicles to these rebalancing regions using an integer linear program. Evaluation with historical taxi data from Manhattan shows that we can service 99.8% of taxi requests in Manhattan using 3000 vehicles with an average waiting time of 57.4 seconds and an average in-car delay of 13.7 seconds. Moreover, we can achieve a higher service rate using 2000 vehicles than prior work achieved with 3000. Furthermore, with a fleet of 3000 vehicles, we reduce the average travel delay by 86%, the average waiting time by 37%, and the amount of ignored requests by 95% compared to earlier work at the expense of an increased distance travelled by the fleet.
机译:按需出行(MoD)系统的最新发展证明了道路车辆作为城市交通高效模式的潜力。最新开发的算法可以实时计算车辆路线,以处理成批的请求,并允许多个请求共享车辆。这些算法主要侧重于优化产生车辆时间表以接送请求。相反,在乘车共享的情况下,闲置车辆向高需求区域的重新分配(称为再平衡)很少受到关注。在本文中,我们提出了一种在具有MoD共享功能的MoD机队中重新平衡闲置车辆的方法。该方法包括:将车队运营区域最佳地划分为再平衡区域的算法,使用传入请求确定每个区域的实时需求估算的算法,以及通过优化将闲置车辆分配给这些再平衡区域的算法整数线性程序。根据来自曼哈顿的历史出租车数据进行的评估显示,我们可以使用3000辆汽车为曼哈顿99.8%的出租车请求提供服务,平均等待时间为57.4秒,平均车内延迟时间为13.7秒。此外,使用2000辆汽车可以比以前使用3000辆汽车获得更高的服务率。此外,拥有3000辆汽车的车队可以将平均旅行延迟减少86%,将平均等待时间减少37%,并且减少与早期工作相比,忽略了95%的请求,但代价是车队的行驶距离增加了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号