首页> 外文会议>Nuclear and emerging technologies for space topical meeting >EVALUATION OF NOVEL REFRACTORY CARBIDE MATRIX FUELS FOR NUCLEAR THERMAL PROPULSION
【24h】

EVALUATION OF NOVEL REFRACTORY CARBIDE MATRIX FUELS FOR NUCLEAR THERMAL PROPULSION

机译:核热推进用新型耐火碳化物基体的评估

获取原文

摘要

Originally developed to enable very high burnups and enhanced accident tolerant fuels for terrestrial power reactors, fully ceramic microencapsulated (FCMm) fuels offer a modern alternative fuel system design for nuclear space applications. Composed of a structural refractory-carbide (RC) matrix (SiC. TiC, ZrC, etc.) impregnated with coated uranium compound particles (UO_2, UN, etc.), RC-FCM is a derivative of the original NERVA/Rover loaded graphite matrix fuels. Most refractory carbides are compatible with the hydrogen propellant and are some of the highest known melting temperature compounds, which may enable enhanced tolerance to desirable nuclear thermal propulsion (NTP) operating conditions. This paper summarizes the combined experimental and modelling efforts recently undertaken to survey FCM fuel for NTP applications. Sensitivity of fuel system design to fuel volume loading (UO: and UN, low enriched uranium < 20 at% U-235) on fuel reactivity was surveyed through infinite lattice calculations using monte carlo n-particle (MCNP) reactor physics code. Matrix coupons of SiC, TiC, and ZrC were thermal cycled using the compact fuel element environmental test (CFEET) at NASA Marshall Space Flight Center at temperatures between 1727 - 2227 °C (2000 - 2500 K) to confirm their stability in hot hydrogen and identify potential degradation mechanisms. The corresponding presentation will relate experimentally determined matrix mass loss and recession rates to infinite lattice models to determine the impact of matrix degradation on expected fuel criticality and lifetime.
机译:最初开发的目的是为地面动力反应堆提供极高的燃尽性和增强的耐事故性燃料,全陶瓷微胶囊(FCMm)燃料为核空间应用提供了现代的替代燃料系统设计。 RC-FCM由浸渍有涂层的铀化合物颗粒(UO_2,UN等)的结构难熔碳化物(RC)基质(SiC。TiC,ZrC等)组成,是原始NERVA /流动载有石墨的衍生物基体燃料。大多数耐火碳化物与氢推进剂兼容,并且是某些已知的最高熔点温度化合物,可以提高对所需核热推进(NTP)操作条件的耐受性。本文总结了最近为调查用于NTP应用的FCM燃料而进行的组合实验和建模工作。通过使用蒙特卡洛n粒子(MCNP)反应堆物理代码进行无限晶格计算,调查了燃料系统设计对燃料体积负荷(UO:和UN,低浓铀<20 at%U-235)的敏感性。使用紧凑型燃料元件环境测试(CFEET)在NASA马歇尔航天飞行中心的温度为1727-2227°C(2000-2500 K)的条件下,对SiC,TiC和ZrC的基体试样进行了热循环,以确认其在热氢气和高温下的稳定性。确定潜在的降解机制。相应的介绍将通过实验确定的基质质量损失和衰退率与无限晶格模型相关联,以确定基质降解对预期燃料临界度和寿命的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号