首页> 外文会议>Nuclear and emerging technologies for space topical meeting >EVALUATION OF NOVEL REFRACTORY CARBIDE MATRIX FUELS FOR NUCLEAR THERMAL PROPULSION
【24h】

EVALUATION OF NOVEL REFRACTORY CARBIDE MATRIX FUELS FOR NUCLEAR THERMAL PROPULSION

机译:核热推进新型耐火碳化物基质燃料的评价

获取原文

摘要

Originally developed to enable very high burnups and enhanced accident tolerant fuels for terrestrial power reactors, fully ceramic microencapsulated (FCMm) fuels offer a modern alternative fuel system design for nuclear space applications. Composed of a structural refractory-carbide (RC) matrix (SiC. TiC, ZrC, etc.) impregnated with coated uranium compound particles (UO_2, UN, etc.), RC-FCM is a derivative of the original NERVA/Rover loaded graphite matrix fuels. Most refractory carbides are compatible with the hydrogen propellant and are some of the highest known melting temperature compounds, which may enable enhanced tolerance to desirable nuclear thermal propulsion (NTP) operating conditions. This paper summarizes the combined experimental and modelling efforts recently undertaken to survey FCM fuel for NTP applications. Sensitivity of fuel system design to fuel volume loading (UO: and UN, low enriched uranium < 20 at% U-235) on fuel reactivity was surveyed through infinite lattice calculations using monte carlo n-particle (MCNP) reactor physics code. Matrix coupons of SiC, TiC, and ZrC were thermal cycled using the compact fuel element environmental test (CFEET) at NASA Marshall Space Flight Center at temperatures between 1727 - 2227 °C (2000 - 2500 K) to confirm their stability in hot hydrogen and identify potential degradation mechanisms. The corresponding presentation will relate experimentally determined matrix mass loss and recession rates to infinite lattice models to determine the impact of matrix degradation on expected fuel criticality and lifetime.
机译:最初开发,使非常高燃耗和增强事故宽容燃料的地面核动力反应堆,全陶瓷微囊化(FCMm)燃料提供了一个现代化的替代燃料系统设计用于核空间应用。由具有涂覆的铀化合物颗粒(UO_2,UN,等)浸渍的结构耐火碳化物(RC)矩阵(SiC等。的TiC,的ZrC等),RC-FCM是一个衍生物原始NERVA的/流动站加载石墨矩阵燃料。大多数耐火碳化物与氢气兼容的推进剂和一些已知的最高熔融温度的化合物,其可以使得增强的耐受性,以期望的核热推进(NTP)的操作条件。本文总结了近期开展的调查FCM燃料NTP应用的综合实验和建模工作。燃料系统设计燃料容积负荷的灵敏度(UO:和UN,在%U-235低浓缩铀<20)上燃料反应性通过使用蒙特卡罗N粒子(MCNP)反应堆物理代码无限晶格计算调查。的SiC,TiC和的ZrC的基质试片的热利用在NASA马歇尔太空飞行中心的紧凑的燃料元件的环境试验(CFEET)在温度循环1727之间 - 2227℃(2000年至2500年K),以确认在热氢气它们的稳定性和识别潜在的退化机制。相应的演讲将涉及实验确定的矩阵质量损失和经济衰退速率无限点阵模型来确定基质降解的预期燃料关键性和寿命的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号