首页> 外文会议>New York Scientific Data Summit >Quantum Computation and Visualization of Hamiltonians using Discrete Quantum Mechanics and IBM QISKit
【24h】

Quantum Computation and Visualization of Hamiltonians using Discrete Quantum Mechanics and IBM QISKit

机译:使用离散量子力学和IBM QISKit进行哈密顿量的量子计算和可视化

获取原文

摘要

Quantum computers have the potential to transform the ways in which we tackle some important problems. The efforts by companies like Google, IBM and Microsoft to construct quantum computers have been making headlines for years. Equally important is the challenge of translating problems into a state that can be fed to these machines. Because quantum computers are in essence controllable quantum systems, the problems that most naturally map to them are those of quantum mechanics. Quantum chemistry has seen particular success in the form of the variational quantum eigensolver (VQE) algorithm, which is used to determine the ground state energy of molecular systems. The goal of our work has been to use the matrix formulation of quantum mechanics to translate other systems so that they can be run through this same algorithm. We describe two ways of accomplishing this using a position basis approach and a Gaussian basis approach. We use this translation to compute finite temperature quantities such as the average energy as a function of temperature. We do this by constructing a 0+1 dimensional thermal field theory, constructing a thermal double of the system and using tensor products to construct operators in the system coupled to a heat bath. We also discuss how to include a chemical potential in the quantum computations. We then connect the 0+1 formalism to gauge theory by using an effective matrix model description used in nuclear theory. We study effective potentials for components of the gauge field and use the VQE algorithm to calculate the ground state energies. We also visualize the wave functions from the eigensolver and make comparisons to theoretical results obtained with continuous operators.
机译:量子计算机有可能改变我们解决一些重要问题的方式。像Google,IBM和Microsoft这样的公司的努力构建量子计算机一直在制作头条。同样重要的是将问题转化为可以馈送到这些机器的状态的挑战。由于量子计算机本质上是可控的量子系统,所以最自然地映射到它们的问题是量子力学。量子化学在变分量子Eigensolver(VQE)算法的形式中已经看出了特殊成功,其用于确定分子系统的地位能量。我们工作的目标一直使用量子力学的矩阵配方来转换其他系统,使得它们可以通过这种相同的算法进行。我们描述了使用位置基础方法和高斯基础方法实现这一目标的两种方式。我们使用此平移来计算有限的温度量,例如作为温度的函数的平均能量。我们通过构造0 + 1维热场理论来实现这一点,构建系统的热双倍,并使用张量产品构建与热浴的系统中的操作员构建。我们还讨论了如何在量子计算中包含化学潜力。然后,我们通过使用核理论使用的有效矩阵模型描述将0 + 1形式主义连接到尺寸理论。我们研究了仪表场的组件的有效潜力,并使用VQE算法计算地面能量。我们还可视化了从Eigensolver中的波函数,并与连续运营商获得的理论结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号