首页> 美国卫生研究院文献>Acta Crystallographica. Section D Structural Biology >High-throughput quantum-mechanics/molecular-mechanics (ONIOM) macromolecular crystallographic refinement with PHENIX/DivCon: the impact of mixed Hamiltonian methods on ligand and protein structure
【2h】

High-throughput quantum-mechanics/molecular-mechanics (ONIOM) macromolecular crystallographic refinement with PHENIX/DivCon: the impact of mixed Hamiltonian methods on ligand and protein structure

机译:使用PHENIX / DivCon的高通量量子力学/分子力学(ONIOM)大分子晶体学提纯:混合哈密顿方法对配体和蛋白质结构的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Conventional macromolecular crystallographic refinement relies on often dubious stereochemical restraints, the preparation of which often requires human validation for unusual species, and on rudimentary energy functionals that are devoid of nonbonding effects owing to electrostatics, polarization, charge transfer or even hydrogen bonding. While this approach has served the crystallographic community for decades, as structure-based drug design/discovery (SBDD) has grown in prominence it has become clear that these conventional methods are less rigorous than they need to be in order to produce properly predictive protein–ligand models, and that the human intervention that is required to successfully treat ligands and other unusual chemistries found in SBDD often precludes high-throughput, automated refinement. Recently, plugins to the Python-based Hierarchical ENvironment for Integrated Xtallography (PHENIX) crystallographic platform have been developed to augment conventional methods with the in situ use of quantum mechanics (QM) applied to ligand(s) along with the surrounding active site(s) at each step of refinement [Borbulevych et al. (2014), Acta Cryst D>70, 1233–1247]. This method (Region-QM) significantly increases the accuracy of the X-ray refinement process, and this approach is now used, coupled with experimental density, to accurately determine protonation states, binding modes, ring-flip states, water positions and so on. In the present work, this approach is expanded to include a more rigorous treatment of the entire structure, including the ligand(s), the associated active site(s) and the entire protein, using a fully automated, mixed quantum-mechanics/molecular-mechanics (QM/MM) Hamiltonian recently implemented in the DivCon package. This approach was validated through the automatic treatment of a population of 80 protein–ligand structures chosen from the Astex Diverse Set. Across the entire population, this method results in an average 3.5-fold reduction in ligand strain and a 4.5-fold improvement in MolProbity clashscore, as well as improvements in Ramachandran and rotamer outlier analyses. Overall, these results demonstrate that the use of a structure-wide QM/MM Hamiltonian exhibits improvements in the local structural chemistry of the ligand similar to Region-QM refinement but with significant improvements in the overall structure beyond the active site.
机译:常规的大分子晶体学精炼依赖于通常可疑的立体化学约束,其制备常常需要人类对不寻常物种的验证,并且还依赖于基本的能量功能,这些功能由于静电,极化,电荷转移甚至氢键而没有非键合效应。尽管这种方法已经为晶体学界服务了数十年,但随着基于结构的药物设计/发现(SBDD)的日趋重要,已经清楚地表明,这些常规方法的严格性要比为产生适当的预测蛋白所需的严格程度低。配体模型,以及成功治疗SBDD中发现的配体和其他不寻常化学物质所需的人工干预通常排除了高通量,自动提纯的可能性。最近,已经开发了基于Python的集成Xtallography分层环境(PHENIX)晶体学平台的插件,以通过将量子力学(QM)应用于配体以及周围的活性位点来增强常规方法。 )的每个细化步骤[Borbulevych等。 (2014),Acta Cryst D > 70 ,1233-1247]。这种方法(Region-QM)大大提高了X射线细化过程的准确性,现在使用该方法以及实验密度来准确确定质子化状态,结合模式,环翻转状态,水位等。在目前的工作中,使用全自动的混合量子力学/分子技术,将该方法扩展为包括对整个结构进行更严格的处理,包括配体,相关的活性位点和整个蛋白质。 -机械(QM / MM)哈密顿量最近在DivCon软件包中实现。通过自动处理选自Astex多样化集的80种蛋白质-配体结构的种群,该方法得到了验证。在整个人群中,这种方法平均减少了3.5倍的配体应变,使MolProbity冲突分数平均提高了4.5倍,并改善了Ramachandran和rotamer异常分析。总体而言,这些结果表明,使用全结构的QM / MM哈密顿量显示出与Region-QM提纯相似的配体局部结构化学改进,但活性位点以外的总体结构有了显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号