首页> 外文会议>IEEE International Conference on High Voltage Engineering and Application >Numerical Simulation of the Interaction Between Nanodielectrics and the Probe of Electrostatic Force Microscopy
【24h】

Numerical Simulation of the Interaction Between Nanodielectrics and the Probe of Electrostatic Force Microscopy

机译:纳米电极与静电力显微镜探针的数值模拟与静电力显微镜探针

获取原文

摘要

Nanodielectrics has become main innovative insulating materials with excellent properties, mainly due to the interfacial region (atomic scale to tens of nanometers thick). It is shown that the microscopic interfacial environment will determine the macroscopic characteristics of materials. Therefore, developing direct detection methods of microscopic interfacial environment will play a key role in the future of nanodielectrics. Electrostatic force microscope (EFM) is a scanning probe microscope which uses the electrostatic interaction between the probe and the sample to characterize the dielectric properties of the interfacial region (up to nanoscale) on the sample surface. However, due to the geometrical size of the probe and the complexity of long-range electrostatic force and van der Waals force, the actual measured EFM signal will be difficult to decipher. Herein, the physical interaction process between EFM probe and typical nanodielectrics is studied by numerical simulation. The model consists of an inorganic spherical nanoparticle placed within the polymer matrix surrounded by interfacial regions. Permittivity and thickness of the interfacial region and particle-interphase depth were systematically investigated to figure out the sensitivity and signal intensity of the EFM probe. The results show that a lower permittivity of matrix, higher permittivity and thicker of the interfacial region, and lower nanoparticle-interface depth, all contribute to making the interfacial region easier to be detected.
机译:纳米电电器已成为主要的创新性绝缘材料,具有优异的性能,主要是由于界面区域(原子刻度为10纳米厚)。结果表明,微观界面环境将确定材料的宏观特征。因此,显影微观界面环境的直接检测方法将在纳米电极的未来发挥关键作用。静电力显微镜(EFM)是一种扫描探针显微镜,其使用探针和样品之间的静电相互作用,以表征样品表面上的界面区域(上至纳米级)的电介质特性。然而,由于探头的几何尺寸和远程静脉力和范德瓦尔力的复杂性,实际测量的EFM信号将难以破译。这里,通过数值模拟研究了EFM探针和典型纳米电极之间的物理相互作用过程。该模型包括放置在由界面区域包围的聚合物基质内的无机球形纳米粒子。系统地研究了界面区域和颗粒间深度的介电常数和颗粒间深度以弄清楚EFM探针的灵敏度和信号强度。结果表明,界面区域的基质,较高介电常数和较厚的介电常数,以及较低的纳米颗粒 - 界面深度,所有贡献都有助于使界面区域更容易检测到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号