首页> 外文会议>American Society for Composites technical conference;American Society for Composites >Material Characterization and Finite Element Modeling for the Forming of Highly Oriented UHMWPE Thin Film and Unidirectional Cross-ply Composites
【24h】

Material Characterization and Finite Element Modeling for the Forming of Highly Oriented UHMWPE Thin Film and Unidirectional Cross-ply Composites

机译:高度取向的UHMWPE薄膜和单向交叉层复合材料成形的材料表征和有限元建模

获取原文

摘要

Thermoforming is a cost-effective, high-volume production process used for the manufactureof complex shaped thermoplastic composite parts. Finite element modeling of the process offers acost-effective and time-saving tool to explore how changes in the ply stack-up orientations andprocessing conditions can impact part quality and throughput. A credible finite element model ofthe process requires a robust constitutive model of the material system and a comprehensiveassociated material characterization program to develop the set of material properties to go intothat model. In this paper, some of the technical challenges associated with the charaterizaton ofthe in-plane shear mechanical behavior of two UHMWPE compsosite formats; a unidirectionalfiber/matrix cross-ply (Dyneema® HB210) and a highly-oriented extruded film (DuPontTMTensylonTM HSBD 30A) and the subsequent finite element modeling of the shear response areexplored. Picture frame shear testing of each material system is conducted to examine themechanical behavior at room temperature and a processing temperature of 100°C. Trilinear andploynomial empirical fits of the evolution of the in-plane shear stiffness as a function of the stateof in-plane shear are derived from these experimental data. The curves are then used as materialinputs for two material models in LS-DYNA, i.e. the built-in *MAT214 (*MAT_DRY_FABRIC)and *MAT41 (user-defined material model), respectively. The two material models are first usedto investigate their respective abilities to replicate the material characterization shear-frame testsfor Dyneema® HB210 and TensylonTM HSBD 30A and subsequently to model an in-plane sheartest, which is a variation of the bias-extension test. Both material models correlate very well withthe shear-frame test data for the two material systems and for the in-plane shear test of Dyneema®HB210. However, both material models underpredict the load deformation response forTensylonTM HSBD 30A. Future work is to understand what enhancements need to be added to thematerial models such that the in-plane shear response of TensylonTM HSBD 30A is better predictedby the models.
机译:热成型是一种经济高效的大批量生产工艺,用于制造 复杂形状的热塑性复合材料零件。该过程的有限元建模提供了 具有成本效益和节省时间的工具,以探索层板堆叠方向的变化以及 加工条件会影响零件质量和产量。可靠的有限元模型 该过程需要强大的材料系统本构模型和全面的 相关的材料表征程序,以开发一组要进入的材料属性 该模型。在本文中,与之相关的一些技术挑战 两种UHMWPE复合形式的面内剪切力学行为;单向的 纤维/基质交叉层(Dyneema®HB210)和高取向挤出薄膜(DuPontTM TensylonTM HSBD 30A)和随后的剪力响应有限元建模为 探索。进行每种材料系统的相框剪切测试,以检查 在室温和100°C的加工温度下的机械性能。三线性和 平面内剪切刚度的演化与状态的函数式经验拟合 从这些实验数据得出平面内剪切力。然后将曲线用作材料 LS-DYNA中两个材料模型的输入,即内置* MAT214(* MAT_DRY_FABRIC) 和* MAT41(用户定义的材料模型)。首次使用两种材料模型 研究他们各自复制材料表征剪切框架测试的能力 适用于Dyneema®HB210和TensylonTM HSBD 30A,随后用于建模面内剪切 测试,这是偏差延伸测试的一种变体。两种材料模型都与 两种材料系统的剪切框架测试数据以及Dyneema®的平面内剪切测试 HB210。但是,这两种材料模型都无法预测 TensylonTM HSBD 30A。未来的工作是要了解哪些功能需要添加到 材料模型,可以更好地预测TensylonTM HSBD 30A的面内剪切响应 通过模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号