首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >NUMERICAL STUDY OF THE FLOW PAST AN AXIAL TURBINE STATOR CASING AND PERSPECTIVES FOR ITS MANAGEMENT
【24h】

NUMERICAL STUDY OF THE FLOW PAST AN AXIAL TURBINE STATOR CASING AND PERSPECTIVES FOR ITS MANAGEMENT

机译:轴流式涡轮定子流场的数值研究及其管理展望

获取原文

摘要

The interaction of secondary flow with the main passage flow results in entropy generation; this accounts for considerable losses in turbomachines. Low aspect ratio blades in an axial turbine lead to a high degree of secondary flow losses. A particular interest is the reduction in secondary flow strength at the turbine casing, which adversely affects the turbine performance. This paper presents a selective review of effective techniques for improving the performance of axial turbines by turbine end wall modifications. This encompasses the use of axisymmetric and non- axisymmetric end wall contouring and the use of fences. Specific attention is given to non-axisymmetric end walls and to their effect on secondary flow losses. A baseline three-dimensional steady RANS k-ω SST model, with axisymmetric walls, is validated against experimental measurements from the Institute of Jet Propulsion and Turbomachinery at the Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen, Germany, with comparative solutions generated by ANSYS Fluent and OpenFOAM. The predicted performance of the stator passage with an axisymmetric casing is compared with that from using a contoured casing with a groove designed using the Beta distribution function for guiding the groove shape. The prediction of a reduced total pressure loss coefficient with the application of the contoured casing supports the groove design approach based on the natural path of the secondary flow features. This work also provided an automated workflow process, linking surface definition in MATLAB, meshing in ICEM CFD, and flow solving and post-processing OpenFOAM. This has generated a casing contouring design tool with a good portability to industry, to design and optimize new turbine blade passages.
机译:次要流动与主要通过流动的相互作用导致产生熵。这在涡轮机中造成了可观的损失。轴向涡轮机中的低纵横比叶片会导致高度的二次流量损失。特别令人关注的是涡轮机壳体处二次流强度的降低,这会对涡轮机性能产生不利影响。本文提出了对通过改进涡轮机端壁来改善轴流式涡轮机性能的有效技术的选择性综述。这包括使用轴对称和非轴对称的端壁轮廓以及使用围栏。特别注意非轴对称端壁及其对二次流量损失的影响。带有轴对称壁的基线三维稳态RANSk-ωSST模型已通过德国亚琛工业大学(RWTH)的喷气推进与涡轮机械研究所的实验测量进行了验证,并采用了ANSYS生成的对比解决方案流利和OpenFOAM。将带有轴对称外壳的定子通道的预测性能与使用带有凹槽的轮廓形外壳的预测性能进行了比较,该凹槽使用Beta分布函数设计以引导凹槽形状。通过使用等高线形套管来降低总压力损失系数的预测,支持了基于次要流动特征的自然路径的凹槽设计方法。这项工作还提供了一个自动化的工作流程,链接了MATLAB中的曲面定义,ICEM CFD中的网格划分以及流求解和后处理OpenFOAM。这样就产生了一种套管轮廓设计工具,具有很好的工业可移植性,可以设计和优化新的涡轮叶片通道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号