首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >A COMPREHENSIVE INVESTIGATION OF BLADE ROW INTERACTION EFFECTS ON STATOR LOSS UTILIZING VANE CLOCKING
【24h】

A COMPREHENSIVE INVESTIGATION OF BLADE ROW INTERACTION EFFECTS ON STATOR LOSS UTILIZING VANE CLOCKING

机译:利用叶片锁定对叶片行相互作用对定子损失的综合研究

获取原文

摘要

Blade row interactions drive the unsteady performance of high pressure compressors. Vane clocking is the relative circumferential positioning of consecutive stationary vane rows with the same vane count. By altering the upstream vane wake's path with respect to the downstream vane, vane clocking changes the blade row interactions and results in a change in steady total pressure loss on the downstream vane. The open literature lacks a conclusive discussion of the flow physics governing these interactions in compressors. This paper presents the details of a comprehensive vane clocking study on the embedded stage of the Purdue 3-stage axial compressor. The steady loss results, including radial total pressure profiles and surface flow visualization, suggest a shift in the Stator 2 corner separations occurs between clocking configurations associated with the maximum and minimum total pressure loss. To better understand the flow mechanisms driving the vane clocking effects on the steady Stator 2 performance, time-resolved interrogations of the Stator 2 inlet flow field, surface pressure unsteadiness, and boundary layer response were conducted. The Stator 2 surface flows, both pressure unsteadiness and boundary layer transition, are influenced by vane clocking and interactions between Rotor 1 and Rotor 2, but neither of these results indicate a cause for the change in steady total pressure loss. Moreover, they are a result of upstream changes in the flow field: the interaction between the Stator 1 wake and Rotor 2 results in a circumferentially varying pattern which alters the inlet flow field for the downstream row, including the unsteadiness and frequency content in the tip and hub regions. Therefore, under different clocking configurations, Stator 2 experiences significantly different inlet blockage and unsteadiness from the Rotor 2 tip leakage flow and hub corner separation, which, in turn, shifts the radial blade loading distribution and subsequent loss development of Stator 2.
机译:刀片行相互作用驱动高压压缩机的不稳定性能。叶片时钟是具有相同叶片计数的连续固定叶轮行的相对周向定位。通过改变上游叶片的上游叶片唤醒的路径,叶片时钟改变刀片行相互作用,并导致下游叶片上稳定总压力损失的变化。开放文献缺乏对压缩机中这些相互作用的流理物理学的结论性讨论。本文介绍了普通3级轴流压缩机嵌入式级综合叶片时钟研究的细节。包括径向总压力分布和表面流量可视化的稳定损失结果表明,在与最大和最小总压力损失相关联的时钟配置之间发生定子2的偏移。为了更好地理解驱动叶片时钟效应对稳定定子2的性能,定子2入口流场的时间分辨询问,表面压力不稳定和边界层响应。定子2表面流动,压力不稳定性和边界层过渡,受到转子1和转子2之间的叶片时钟和相互作用的影响,但是这些结果都不表示稳定总压力损失的变化的原因。此外,它们是流场中的上游变化的结果:定子1唤醒和转子2之间的相互作用导致圆周变化的图案,该图案改变了下游行的入口流场,包括尖端中的不稳定性和频率内容和轮毂区域。因此,在不同的时钟配置下,定子2经历显着不同的入口堵塞和从转子2漏漏流和轮毂角分离的不稳定性,这又转移径向叶片装载分布和随后的定子2的损耗开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号