首页> 外文会议>International Joint Conference on Neural Networks >Spike timing dependent plasticity based enhanced self-learning for efficient pattern recognition in spiking neural networks
【24h】

Spike timing dependent plasticity based enhanced self-learning for efficient pattern recognition in spiking neural networks

机译:基于尖峰时序的可塑性基于增强的自学习,可增强尖峰神经网络中的模式识别

获取原文
获取外文期刊封面目录资料

摘要

Spike Timing Dependent Plasticity (STDP), wherein synaptic weights are modified based on the temporal correlation between a pair of pre- and post-synaptic (post-neuronal) spikes, is widely used to implement unsupervised learning in Spiking Neural Networks (SNNs). In general, STDP-based learning models disregard the information embedded in post-neuronal spiking frequency. We observe that updating the synaptic weights at the instants of every post-neuronal spike while ignoring the spiking frequency could potentially cause them to learn overlapping representations of multiple input patterns sharing common features. We present STDP-based enhanced plasticity mechanisms that account for the spiking frequency to achieve efficient synaptic learning. First, we utilize low-pass filtered neuronal membrane potential to obtain an estimate of the spiking frequency. We perform STDP-driven weight updates in the event of a post-spike if the filtered potential exceeds a definite threshold. This ensures that plasticity is effected on the dominantly firing neuron that indicates a strong bias in learning the input pattern. Synaptic updates are restrained in the case of sporadic neuronal spiking activity, which implies a weak correlation with the input pattern. This enhances the quality of features encoded by the synapses, resulting in an improvement of 5.8% in the classification accuracy of an SNN of 100 neurons trained for digit recognition. Our simulations further show that the enhanced scheme provides a reduction of 2 χ in the number of weight updates, which leads to improved energy efficiency in event-driven SNN implementations. Second, we explore a neuronal spike-count based enhanced plasticity mechanism. The synapses are modified at the instant of a post-spike if the neuron had fired a certain number of spikes since the preceding update instant. This scheme performs delayed updates at suitable neuronal spiking instants to learn improved synaptic representations. Using this technique, the classification accuracy increased by 4% with 5.2× reduction in the number of weight updates.
机译:尖峰时序相关可塑性(STDP)被广泛用于在尖峰神经网络(SNN)中实施无监督学习,其中突触权重是基于一对突触前和突触后(神经元后)尖峰之间的时间相关性进行修改的。通常,基于STDP的学习模型会忽略神经后突增频率中嵌入的信息。我们观察到,在每个神经元后尖峰的瞬间更新突触权重,而忽略尖峰频率,可能会导致它们学习共享共同特征的多个输入模式的重叠表示。我们提出了基于STDP的增强的可塑性机制,该机制说明了实现有效突触学习的尖峰频率。首先,我们利用低通滤波后的神经元膜电位来获得峰值频率的估计值。如果过滤后的电势超过确定的阈值,我们会在发生尖峰后执行STDP驱动的体重更新。这样可以确保对主要激发神经元的可塑性产生影响,这表明在学习输入模式时存在强烈的偏见。在偶发的神经元突增活动的情况下,突触更新受到抑制,这暗示与输入模式的相关性较弱。这提高了突触编码的特征的质量,从而导致为数字识别训练的100个神经元的SNN的分类精度提高了5.8%。我们的仿真进一步表明,改进的方案使权重更新的数量减少了2χ,从而在事件驱动的SNN实现中提高了能效。第二,我们探索基于神经元峰值计数的增强的可塑性机制。如果自前一个更新瞬间以来神经元已发出一定数量的尖峰,则在尖峰后的瞬间修改突触。该方案在合适的神经元突增时刻执行延迟更新,以学习改进的突触表示。使用此技术,分类精度提高了4%,而权重更新次数减少了5.2倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号