首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >PREDICTING FLASHBACK LIMITS OF A GAS TURBINE MODEL COMBUSTOR BASED ON VELOCITY AND FUEL CONCENTRATION FOR H_2-AIR-MIXTURES
【24h】

PREDICTING FLASHBACK LIMITS OF A GAS TURBINE MODEL COMBUSTOR BASED ON VELOCITY AND FUEL CONCENTRATION FOR H_2-AIR-MIXTURES

机译:基于速度和燃料浓度的H_2-空气混合气燃气轮机模型燃烧器反燃极限的预测

获取原文

摘要

This study investigates the influence of the fuel injection strategy on safety against flashback in a gas turbine model combustor with premixing of H2-air-mixtures. The flashback propensity is quantified and the flashback mechanism is identified experimentally. The A2EV swirler concept exhibits a hollow, thick walled conical structure with four tangential slots. Four fuel injector geometries were tested. One of them injects the fuel orthogonal to the airflow in the slots (jet-in-crossflow-injector, JICI). Three injector types introduce the fuel almost isokinetic to the airflow at the trailing edge of the swirler slots (trailing edge injector, TEI). Velocity and mixing fields in mixing zone and combustion chamber in isothermal water flow were measured with High-speed-Particle-Image-Velocimetry (PIV) and Highspeed-Laser-Induced-Fluorescence (LIF). The flashback limit was determined under atmospheric pressure for three air mass flows and 673 K preheat temperature for H_2-air-mixtures. Flashback mechanism and trajectory of the flame tip during flashback were identified with two stereoscopically oriented intensified high-speed cameras observing the OH~* radiation. We notice flashback in the core flow due to Combustion Induced Vortex Breakdown (CIVB) and Turbulent upstream Flame Propagation (TFP) near the wall dependent on the injector type. The Flashback Resistance (FBR) defined as the ratio between a characteristic flow speed and a characteristic flame speed measures the direction of propagation of a turbulent flame in the flow field. Although CIVB cannot be predicted solely based on the FBR, its distribution gives evidence for CIVB-prone states. The fuel should be injected preferably isokinetic to the air flow along the entire trailing edge in oder to reduce the RMS fluctuation of velocity and fuel concentration. The characteristic velocity in the entire cross section of the combustion chamber inlet should be at least twice the characteristic flame speed. The position of the stagnation point should be tuned to be located in the combustion chamber by adjusting the axial momentum. Those measures lead to safe operation with highly reactive fuels at high equivalence ratios.
机译:这项研究调查了预混合H2空气混合物的燃气轮机模型燃烧器中,燃料喷射策略对反燃安全性的影响。量化了回火倾向,并通过实验确定了回火机制。 A2EV旋流器概念展示了带有四个切线槽的空心,厚壁圆锥形结构。测试了四个燃油喷射器的几何形状。其中之一将燃料垂直于槽中的气流喷射(横流喷射喷射器,JICI)。三种类型的喷油器在旋流器槽的后缘(后缘喷油器,TEI)将几乎等速的燃料引入到气流中。利用高速粒子图像测速技术(PIV)和高速激光诱导荧光技术(LIF)对等温水流中混合区和燃烧室的速度和混合场进行了测量。闪回极限是在大气压下针对三种空气质量流量和673 K预热温度(对于H_2-空气混合物)确定的。通过两个立体定向的增强型高速相机观察OH〜*辐射,确定了闪回过程中的闪回机制和火焰尖端的轨迹。我们注意到由于燃烧引起的涡旋破坏(CIVB)和壁附近的湍流上游火焰传播(TFP),这取决于喷油嘴的类型,从而在堆芯流中产生反燃。定义为特征流速与特征火焰速度之比的反燃阻力(FBR)衡量湍流火焰在流场中的传播方向。尽管不能仅基于FBR来预测CIVB,但其分布为CIVB易发性状态提供了证据。燃料应优选沿整个后缘等速流向空气,以减少速度和燃料浓度的RMS波动。燃烧室入口整个横截面上的特征速度应至少是特征火焰速度的两倍。停滞点的位置应通过调节轴向动量来调整为位于燃烧室中。这些措施可确保以高当量比使用高反应性燃料进行安全操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号