...
首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Effect of fuel-air mixture velocity on combustion instability of a model gas turbine combustor
【24h】

Effect of fuel-air mixture velocity on combustion instability of a model gas turbine combustor

机译:燃料-空气混合物速度对模型燃气轮机燃烧器燃烧不稳定性的影响

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, it is easy for unstable combustion phenomenon to develop in a gas turbine that is working in a lean premixed condition. To eliminate the onset of these instabilities and develop effective approaches for control, the mechanisms responsible for their occurrence must be understood. The flame recirculation zone is very important, as it can modulate the fuel flow rate and may be the source of instability, plus its flame structure has a major impact on heat release rate oscillation and flame stabilization. In this study, we conducted experiments under various operating conditions with a model gas turbine combustor to examine the relation of combustion instability and flame structure by OH chemiluminescence. Swirling CH_4 - air flame was investigated with an overall equivalence ratio of 1.2 to lean blowout limit and dump plane velocity of 30-70 m/s. Phase-locking analysis was performed to identify structural changes at each phase of the reference dynamic pressure sensor under conditions of instability. At an unstable condition, flame root size varies a lot compared to stable condition which is because of air and fuel mixture flow rate changes due to combustor pressure modulation. After this structural change, local extinction and re-ignition occur and it can generate a feedback loop for combustion instability. This analysis suggests that pressure fluctuation of combustion causes deformation of flame structure and variation of flame has a strong effect on combustion instability. In this study, we observed two types of combustion instability characteristics related to the instability of both the thermo-acoustic and flame vortex type.
机译:如今,在稀混合气条件下工作的燃气轮机中容易出现不稳定燃烧现象。为了消除这些不稳定性的发作并开发有效的控制方法,必须了解造成这些不稳定性的机制。火焰再循环区非常重要,因为它可以调节燃料流量,并且可能是不稳定的来源,此外,其火焰结构对放热速率的振荡和火焰稳定性也有重大影响。在这项研究中,我们使用模型燃气轮机燃烧器在各种工况下进行了实验,以通过OH化学发光检查燃烧不稳定性和火焰结构的关系。研究了CH_4-空气涡流的旋流,其总当量比与稀薄喷出极限之比为1.2,倾卸面速度为30-70 m / s。进行锁相分析以识别在不稳定条件下参考动压传感器各相的结构变化。在不稳定条件下,与稳定条件相比,火焰根的大小变化很大,这是由于空气和燃料混合物流量因燃烧室压力调制而变化。这种结构变化之后,会发生局部熄灭和重燃,并会产生燃烧不稳定的反馈回路。分析表明,燃烧压力的波动会引起火焰结构的变形,而火焰的变化对燃烧的不稳定性影响很大。在这项研究中,我们观察到两种与热声和火焰涡旋类型的不稳定性相关的燃烧不稳定性特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号