首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >INVESTIGATION OF AIR INJECTION AND CAVITY SIZE WITHIN A CIRCUMFERENTIAL COMBUSTOR TO INCREASE G-LOAD AND RESIDENCE TIME
【24h】

INVESTIGATION OF AIR INJECTION AND CAVITY SIZE WITHIN A CIRCUMFERENTIAL COMBUSTOR TO INCREASE G-LOAD AND RESIDENCE TIME

机译:在周向燃烧室内进行进气量和腔尺寸的调查,以增加重力负荷和停留时间

获取原文

摘要

Combustion at high G- loading offers the promise of higher flame speeds and shorter residence times. Ultra-Compact Combustors (UCC) make use of this phenomenon by injecting air and fuel into a circumferential cavity around the main core flow. Air is injected tangentially into the combustion cavity to induce bulk circumferential swirl. Swirl velocities in the cavity produce a centrifugal load on the flow that is typically expressed in terms of gravitational acceleration, or g-loading. The Air Force Institute of Technology (AFIT) has developed an experimental facility in which g-loads up to 2000 times the earth's gravitational field ("2000 g's") can be established. This paper investigates the flow within the combustion cavity to determine conditions that lead to the generation of higher g-loads and longer residence times. This is coupled with the desire to completely combust the fuel - ideally within the combustion cavity. These objectives have led to changes within the AFIT test setup to enable optical access into the primary combustion cavity. Particle Image Velocimetry (PIV), complemented by traditional high-speed video imagery, provided high-fidelity measurements of the velocity fields within the cavity. These experimental measurements were compared to a set of Computational Fluid Dynamics (CFD) solutions. Improved cavity air and fuel injection schemes were evaluated over a range of air flows and equivalence ratios. Increased combustion stability was attained by providing uniform distribution of air drivers. Lean cavity equivalence ratios at a high total airflow resulted in higher g-loads and complete combustion showing promise for utilizing the UCC as a main combustor.
机译:在高负荷下燃烧可提供更高的火焰速度和更短的停留时间。超紧凑型燃烧器(UCC)通过将空气和燃料注入到主堆芯流周围的圆周腔中来利用这种现象。空气切向喷射到燃烧腔中,以引起大的圆周涡旋。空腔中的旋流速度会在流上产生离心载荷,通常以重力加速度或g载荷表示。空军技术学院(AFIT)开发了一个实验设施,可以在其中建立高达2000倍地球重力场(“ 2000 g's”)的g载荷。本文研究了燃烧腔内的流动,以确定导致更高g载荷和更长停留时间产生的条件。这与完全燃烧燃料的愿望结合在一起-理想的是在燃烧腔内燃烧。这些目标已导致AFIT测试设置发生变化,从而可以通过光学方式进入主燃烧腔。粒子图像测速技术(PIV)与传统的高速视频图像相辅相成,可对腔体内的速度场进行高保真度测量。将这些实验测量结果与一组计算流体动力学(CFD)解决方案进行了比较。在一定范围的空气流量和当量比下,评估了改进的型腔空气和燃料喷射方案。通过提供均匀的空气驱动器,可以提高燃烧稳定性。在高总气流下的稀薄腔当量比导致更高的g负荷和完全燃烧,这显示出将UCC用作主要燃烧器的希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号