首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >INVESTIGATION OF AIR INJECTION AND CAVITY SIZE WITHIN A CIRCUMFERENTIAL COMBUSTOR TO INCREASE G-LOAD AND RESIDENCE TIME
【24h】

INVESTIGATION OF AIR INJECTION AND CAVITY SIZE WITHIN A CIRCUMFERENTIAL COMBUSTOR TO INCREASE G-LOAD AND RESIDENCE TIME

机译:在圆周燃烧器内的空气喷射和腔尺寸调查,以增加G负载和停留时间

获取原文
获取外文期刊封面目录资料

摘要

Combustion at high G- loading offers the promise of higher flame speeds and shorter residence times. Ultra-Compact Combustors (UCC) make use of this phenomenon by injecting air and fuel into a circumferential cavity around the main core flow. Air is injected tangentially into the combustion cavity to induce bulk circumferential swirl. Swirl velocities in the cavity produce a centrifugal load on the flow that is typically expressed in terms of gravitational acceleration, or g-loading. The Air Force Institute of Technology (AFIT) has developed an experimental facility in which g-loads up to 2000 times the earth's gravitational field ("2000 g's") can be established. This paper investigates the flow within the combustion cavity to determine conditions that lead to the generation of higher g-loads and longer residence times. This is coupled with the desire to completely combust the fuel - ideally within the combustion cavity. These objectives have led to changes within the AFIT test setup to enable optical access into the primary combustion cavity. Particle Image Velocimetry (PIV), complemented by traditional high-speed video imagery, provided high-fidelity measurements of the velocity fields within the cavity. These experimental measurements were compared to a set of Computational Fluid Dynamics (CFD) solutions. Improved cavity air and fuel injection schemes were evaluated over a range of air flows and equivalence ratios. Increased combustion stability was attained by providing uniform distribution of air drivers. Lean cavity equivalence ratios at a high total airflow resulted in higher g-loads and complete combustion showing promise for utilizing the UCC as a main combustor.
机译:高G-Loading的燃烧提供了更高的火焰速度和较短的住宅时间。超细燃烧器(UCC)通过将空气和燃料喷射到围绕主芯流的圆周腔中来利用这种现象。空气切向进入燃烧腔中以诱导散装圆周旋流。腔中的旋流速度在流动上产生离心载荷,其通常以重力加速度或G载荷表示。空军技术技术研究所(AFIT)开发了一个实验设施,其中G负载最高2000倍的地球引力场(“2000g”)可以建立。本文研究了燃烧腔内的流动,以确定导致较高载荷和较长的停留时间产生的条件。这与完全燃烧燃料 - 理想地在燃烧腔内的燃料的燃烧。这些目标导致了后大量测试设置内的变化,以使光学访问能够进入初级燃烧腔。粒子图像VELOCIMETRY(PIV),由传统的高速视频图像补充,提供了腔内的速度场的高保真测量。将这些实验测量结果与一组计算流体动力学(CFD)解决方案进行了比较。在一系列空气流量和等效比率上评估改进的腔空气和燃料喷射方案。通过提供均匀的空气驱动器分布,实现了增加的燃烧稳定性。贫腔等效比率在高总气流中导致更高的G负载和完全燃烧,显示利用UCC作为主要燃烧器的承诺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号