首页> 外文学位 >Biohydrochemical Enhancements for Streamwater Treatment: Engineered Hyporheic Zones to Increase Hyporheic Exchange, Control Residence Times, and Improve Water Quality
【24h】

Biohydrochemical Enhancements for Streamwater Treatment: Engineered Hyporheic Zones to Increase Hyporheic Exchange, Control Residence Times, and Improve Water Quality

机译:生化水处理技术的改进:设计了疏水区以增加疏水交换,控制停留时间并改善水质

获取原文
获取原文并翻译 | 示例

摘要

Nonpoint source pollution is the number one cause of water quality impairments to US rivers and lakes, and stormwater is the fastest growing category of nonpoint source pollution. In nature, nonpoint source pollutants can be treated by streambed sediments of impaired streams in a process analogous to biological sand filtration. This streambed biofilter is called the hyporheic zone (HZ), and it has been gaining attention in stream restoration due to its unique role in improving water quality. In particular, the HZ can attenuate pathogens (indicators), nutrients, and metals (the top three pollutant classes that lead to stormwater quality regulatory action) from the entire upstream watershed, thereby capturing nonpoint source pollution better than distributed BMPs. However, exchange between polluted surface waters and their HZs are often limited and inefficient. Prior to our project, the past two decades of research on the HZ had not been translated into effective Best Management Practices (BMPs) for stormwater managers. This knowledge gap prevented stormwater and stream restoration projects from properly engineering HZs to increase hyporheic exchange and optimize (nonpoint source) pollutant removal. In particular, an HZ BMP needs to 1) drive hyporheic exchange flows, 2) control hyporheic residence times, and 3) be customizable for removal of specific contaminants of concern. Currently, low-head dams are used to drive hyporheic exchange, but standard designs do not control residence times and are not customizable, so they have minimal water quality benefits. The objectives of this PhD research were to develop and test a novel engineered HZ BMP to improve streamwater quality. Specifically, we utilized manipulations of streambed media to create a modular BMP called Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST modules are comprised of subsurface modifications to streambed permeability to drive hyporheic exchange, paired with reactive geomedia (e.g., woodchips) to enhance biogeochemical conditions needed for pollutant removal. BEST were explored through three studies. The first featured a numerical model evaluating multiple BEST modular designs on hyporheic exchange flows and contaminant attenuation. The most promising BEST design from the numerical model was then installed in a constructed stream flume alongside an all-sand control channel. The second study featured conservative and reactive tracer experiments to compare the impact of BEST on hyporheic transient storage and attenuation of a model compound, resazurin, which undergoes first-order microbially mediated degradation under aerobic conditions. The third study used the same flumes to compare BEST to the control for the attenuation of urban stormwater contaminants: nitrogen and atrazine. The cumulative results of these studies indicate that BEST can provide substantial improvements to streamwater quality over reaches of hundreds of meters in small streams or constructed urban stormwater channels (e.g., flow rates < 10 L/s). Numerical models highlight the importance of impermeable "book ends" in BEST modules to maximize hyporheic exchange and control residence times. Flume studies of this design showed that BEST increased the effective HZ exchange volume by 50% compared to the control, which led to 45-95% increases in the reach-scale attenuation rates of multiple stormwater contaminants. In other words, stormwater channels that incorporate BEST modules could reach water quality targets in 45-95% less reach length compared to an all-sand streambed (e.g., sand filter). The BEST design tested in these experiments was well suited to fast, aerobic reactions (e.g., nitrification), but future designs will be tailored for anaerobic reactions to broaden the range of pollutants that can be treated (e.g., nitrogen via denitrification). Overall, the results suggest that BEST could be an adaptable and complementary stormwater and stream restoration BMP to increase attenuation of nonpoint source pollutants within small, impaired streams.
机译:面源污染是导致美国河流和湖泊水质受损的第一大原因,雨水是面源污染增长最快的类别。在自然界中,非点源污染物可以通过与生物砂过滤类似的过程通过受损流的河床沉积物进行处理。这种流化床生物滤池被称为低渗带(HZ),由于其在改善水质方面的独特作用,它在溪流修复中受到了关注。特别是,HZ可以从整个上游流域衰减病原体(指标),养分和金属(导致雨水水质调节作用的三大污染物类别),从而比分散的BMP更好地捕获面源污染。但是,受污染的地表水与其HZ之间的交换通常是有限且效率低下的。在执行我们的项目之前,对HZ的过去二十年的研究尚未转化为针对雨水管理人员的有效最佳管理实践(BMP)。这种知识上的差距使雨水和河流恢复项目无法妥善设计HZ,以增加水交换效率并优化(非点源)污染物去除。特别是,HZ BMP需要1)驱动水流交换流,2)控制水流停留时间,以及3)可定制以去除特定的相关污染物。当前,低水头大坝被用于驱动水流交换,但是标准设计不能控制停留时间并且不能定制,因此它们具有最小的水质效益。这项博士研究的目的是开发和测试新型工程HZ BMP,以改善溪水水质。具体来说,我们利用流化床介质的操作来创建模块化的BMP,称为流水处理的生物氢化学增强剂(BEST)。 BEST模块由对河床渗透性的地下改造组成,以促进低渗交换,并与反应性土工材料(例如木片)配对,以增强去除污染物所需的生物地球化学条件。通过三项研究探索了BEST。第一个功能是一个数值模型,该模型评估了低流量交换流量和污染物衰减的多个BEST模块化设计。然后,将数值模型中最有希望的BEST设计安装在全沙控制通道旁边的人工水槽中。第二项研究采用保守性和反应性示踪剂实验进行比较,以比较BEST对流动性暂时储存和模型化合物刃天青的衰减的影响,刃天青在有氧条件下经历了一级微生物介导的降解。第三项研究使用相同的水槽将BEST与控制城市雨水污染物(氮和at去津)的衰减进行比较。这些研究的累积结果表明,BEST可以大大改善小溪或城市雨水通道中数百米范围内的溪流水质(例如,流速<10 L / s)。数值模型强调了BEST模块中不可渗透的“书本末端”对于最大化交换性和控制停留时间的重要性。这种设计的水槽研究表明,与对照相比,BEST将有效的HZ交换量增加了50%,从而使多种雨水污染物的达标衰减率增加了45-95%。换句话说,与全沙流床(例如,沙滤池)相比,结合了BEST模块的雨水渠道可以将水质目标的长度缩短45-95%。在这些实验中测试的BEST设计非常适合快速的好氧反应(例如硝化),但是将来的设计将针对厌氧反应进行定制,以扩大可处理的污染物范围(例如通过反硝化作用的氮)。总体而言,结果表明,BEST可能是一种适应性强的互补雨水和溪流恢复BMP,可以增加受损小溪流中非点源污染物的衰减。

著录项

  • 作者

    Herzog, Skuyler Poage.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Hydrologic sciences.;Environmental engineering.;Environmental science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 100 p.
  • 总页数 100
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号