首页> 外文会议>Conference on physics of reactors >NEUTRONIC PERFORMANCE OF HIGH POWER DENSITY MARINE PROPULSION CORES USING UO_2 AND MICRO-HETEROGENEOUS ThO_2-UO_2 DUPLEX FUELS
【24h】

NEUTRONIC PERFORMANCE OF HIGH POWER DENSITY MARINE PROPULSION CORES USING UO_2 AND MICRO-HETEROGENEOUS ThO_2-UO_2 DUPLEX FUELS

机译:使用UO_2和微异相ThO_2-UO_2双相燃料的高功率密度海洋推进系统的中子性能

获取原文

摘要

In an effort to de-carbonise commercial freight shipping, there is growing interest in the possibility of using nuclear propulsion systems. Reactor cores for such an application would need to be fundamentally different from land-based power generation systems. For marine propulsion reactors, where weight and hence size are at a premium, power density is an important figure of merit and characterizes design performance. This paper investigates the effect of high power density on core lifetime while satisfying the neutronic safety constraints. In this reactor physics study, we attempt to design a high power density core that fulfills the objective of providing 15 effective full-power-years (EFPY) life at 333 MWth using 15% U-235 enriched micro-heterogeneous ThO_2-UO_2 duplex fuel and 18% U-235 enriched homogeneously mixed all-UO_2 fuel. We use WIMS to develop subassembly designs and PANTHER to examine whole-core arrangements. In order to design cores with power densities between 90 and 250 MW/m~3, five cases have been chosen by optimizing the fuel pin diameter (D), pin pitch (P) and pitch-to-diameter ratio (P/D). Taking advantage of self-shielding effects, the duplex option shows greater promise in the final burnable poison design for all the high power density cases. For the final poison design with ZrB_2, duplex fuel contributes ~5% more initial reactivity suppression and ~20% lower reactivity swing. Our analyses show that it is possible to increase the power density by at least 40% above that for the "standard geometry fuel" while satisfying the core neutronic safety constraints and providing a core life of at least 15 years. Finally, optimised assemblies for all the high power density cases are loaded into a 3D reactor model in PANTHER. PANTHER results confirm that at the end of the 15-year cycle, the candidate cores are on the border of criticality for both fuels, so the fissile loading is well-designed for the desired lifetime.
机译:为了使商业货运低碳化,人们越来越关注使用核推进系统的可能性。用于此类应用的反应堆堆芯必须与陆上发电系统从根本上有所不同。对于船用推进反应堆来说,重量和大小都非常重要,因此功率密度是重要的品质因数,它表征了设计性能。本文研究了在满足中子安全性约束的同时,高功率密度对铁芯寿命的影响。在该反应堆物理研究中,我们尝试设计一个高功率密度堆芯,该目标使用15%富含U-235的微异质ThO_2-UO_2双相燃料,实现在333 MWth时提供15个有效满功率年(EFPY)寿命的目标。和18%的U-235浓缩了均匀混合的全UO_2燃料。我们使用WIMS来开发子装配设计,并使用PANTHER来检查整个核心布置。为了设计功率密度在90到250 MW / m〜3之间的铁芯,通过优化燃料销直径(D),销间距(P)和间距直径比(P / D)选择了五种情况。利用自屏蔽效应,双工选项在所有高功率密度情况下的最终可燃毒物设计中显示出更大的希望。对于使用ZrB_2的最终毒物设计,双相燃料的初始反应性抑制作用提高约5%,而反应性波动降低约-20%。我们的分析表明,在满足核心中子安全性约束并提供至少15年的核心寿命的同时,可以将功率密度至少比“标准几何形状燃料”的功率密度提高40%。最后,将用于所有高功率密度情况的优化组件加载到PANTHER中的3D反应堆模型中。 PANTHER的结果证实,在15年周期的末尾,两种燃料的候选堆芯都处于临界边界,因此可裂变载荷的设计合理,可达到理想的使用寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号