首页> 外文会议>Conference on physics of reactors >VARIATIONAL NODAL METHOD FISSION-SOURCE ITERATION ACCELERATION USING THE PARTITIONED-MATRIX TECHNIQUE
【24h】

VARIATIONAL NODAL METHOD FISSION-SOURCE ITERATION ACCELERATION USING THE PARTITIONED-MATRIX TECHNIQUE

机译:使用分区矩阵技术进行变形节点方法裂变源迭代加速

获取原文

摘要

The Variational Nodal Method (VNM) expands the nodal volumetric flux and surface partial current into the sums of orthogonal basis functions without using the transverse integration technique, providing a number of advantages for employing the VNM in Pressurized Water Reactor (PWR) core simulation. The orthogonality of those basis functions guarantees the conservation of neutron balance regardless of the expansion orders, providing an opportunity to accelerate the computationally expensive full-order iteration by using cheap low-order sweeping with high-order moments fixed. This was named as the Partitioned-Matrix (PM) technique in the legacy VNM code VARIANT, and was applied to the within-group (WG) iteration. It is very effective for neutron-transport calculation, but less effective for neutron-diffusion mainly due to the reduced number of high-order partial current moments. In this paper, we extend the PM technique to the Fission-Source (FS) iteration to accelerate the flux convergence by using low-order flux moments also. Based on our new VNM code VIOLET, considering the fact that the discontinuity factor used for preserving neutron leakage rates during spatial homogenization slows down the nodal iteration convergence, numerical tests were carried out for two typical PWR problems respectively without and with discontinuity factors. By analyzing both the computational effort in terms of FLOP (FLoat-ing-point OPeration) and computing time, the following conclusions have been demonstrated. The legacy PM technique for WG iteration can provide an acceleration ratio of about 2, while the one for FS iteration itself can accelerate by a factor of about 3. By accelerating both the WG and FS iteration simultaneously, the acceleration ratio is about 4.
机译:变形节点方法(VNM)将节点体积磁通量和表面部分电流扩展到正交基函数的总和而不使用横向积分技术,为采用加压水反应器(PWR)核模拟的使用VNM提供许多优点。这些基础职能的正交性保证了无论膨胀订单如何保存中子均衡,提供机会,通过使用固定的高阶瞬间使用便宜的低阶扫描来加速计算昂贵的全阶迭代。这被称为传统VNM代码变体中的分区矩阵(PM)技术,并应用于组内(WG)迭代。它对于中子传输计算非常有效,但对于中子扩散的有效性较小,主要是由于高阶部分当前时刻的数量减少。在本文中,我们将PM技术扩展到裂变源(FS)迭代,以通过使用低阶通量时刻加速磁通量收敛。基于我们新VNM代码VIOLET,考虑到用于在空间均匀化减慢节点迭代收敛保留中子泄漏率连续因子,数值试验,分别进行两个典型的PWR的问题,而与中断因素的事实。通过分析浮游(浮点数)和计算时间方面的计算工作,已经证明了以下结论。用于WG迭代的传统PM技术可以提供约2的加速度,而FS迭代本身的一个速度可以加速约3.通过同时加速WG和FS迭代,加速度为约4。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号