首页> 外文会议>Conference on physics of reactors >VARIATIONAL NODAL METHOD FISSION-SOURCE ITERATION ACCELERATION USING THE PARTITIONED-MATRIX TECHNIQUE
【24h】

VARIATIONAL NODAL METHOD FISSION-SOURCE ITERATION ACCELERATION USING THE PARTITIONED-MATRIX TECHNIQUE

机译:分块矩阵技术的变分节法裂变源迭代加速

获取原文

摘要

The Variational Nodal Method (VNM) expands the nodal volumetric flux and surface partial current into the sums of orthogonal basis functions without using the transverse integration technique, providing a number of advantages for employing the VNM in Pressurized Water Reactor (PWR) core simulation. The orthogonality of those basis functions guarantees the conservation of neutron balance regardless of the expansion orders, providing an opportunity to accelerate the computationally expensive full-order iteration by using cheap low-order sweeping with high-order moments fixed. This was named as the Partitioned-Matrix (PM) technique in the legacy VNM code VARIANT, and was applied to the within-group (WG) iteration. It is very effective for neutron-transport calculation, but less effective for neutron-diffusion mainly due to the reduced number of high-order partial current moments. In this paper, we extend the PM technique to the Fission-Source (FS) iteration to accelerate the flux convergence by using low-order flux moments also. Based on our new VNM code VIOLET, considering the fact that the discontinuity factor used for preserving neutron leakage rates during spatial homogenization slows down the nodal iteration convergence, numerical tests were carried out for two typical PWR problems respectively without and with discontinuity factors. By analyzing both the computational effort in terms of FLOP (FLoat-ing-point OPeration) and computing time, the following conclusions have been demonstrated. The legacy PM technique for WG iteration can provide an acceleration ratio of about 2, while the one for FS iteration itself can accelerate by a factor of about 3. By accelerating both the WG and FS iteration simultaneously, the acceleration ratio is about 4.
机译:变分节点法(VNM)在不使用横向积分技术的情况下将节点的体积通量和表面分电流扩展为正交基函数之和,为在压水堆(PWR)堆芯仿真中使用VNM提供了许多优势。这些基函数的正交性保证了中子平衡的保持,而与扩展阶数无关,从而提供了机会,可以通过使用固定高阶矩的廉价低阶扫频来加速计算量大的全阶迭代。在旧版VNM代码VARIANT中,该方法称为分区矩阵(PM)技术,并应用于组内(WG)迭代。它对中子输运计算非常有效,但对中子扩散的影响较小,这主要是由于减少了高阶分流矩的数量。在本文中,我们将PM技术扩展到裂变源(FS)迭代,以通过使用低阶磁通矩来加速磁通收敛。基于我们的新的VNM代码VIOLET,考虑到在空间均匀化过程中用于保持中子泄漏率的不连续性因素会减慢节点迭代收敛的事实,分别对两个不带不连续性因素和带有不连续性因素的PWR问题进行了数值测试。通过分析基于FLOP(浮点运算)的计算量和计算时间,已证明了以下结论。用于WG迭代的传统PM技术可提供约2的加速比,而用于FS迭代的PM技术本身可加速约3倍。通过同时加速WG和FS迭代,加速比约为4。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号