首页> 外文会议>Conference on physics of medical imaging >Exploration of Maximum Count Rate Capabilities for Large-Area Photon Counting Arrays Based on Polycrystalline Silicon Thin-Film Transistors
【24h】

Exploration of Maximum Count Rate Capabilities for Large-Area Photon Counting Arrays Based on Polycrystalline Silicon Thin-Film Transistors

机译:基于多晶硅薄膜晶体管的大面积光子计数阵列最大计数率能力的探索

获取原文

摘要

Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.
机译:具有能量辨别能力的像素化光子计数检测器对X射线成像的临床兴趣增加。目前,这种探测器目前用于乳房X线照相术的临床用途和用于乳房断层合成和光谱CT的开发,通常采用基于晶体硅的像素电路 - 一种通常对大区域设备经济制造的半导体材料。一个有趣的替代半导体是多晶硅(Poly-Si),一种能够产生非常大面积的整体装置的薄膜技术。类似于晶体硅,Poly-Si允许实现光子计数所需的快速,复合物的类型 - 以无定形硅(目前用于大面积,有源矩阵的材料)不可能的处理速度操作,平板图像仪)。二维光子计数阵列的像素电路通常包括四个阶段:放大器,比较器,时钟发生器和计数器。模拟前端(特别是放大器)强烈影响性能,因此感兴趣地研究。本文在诊断成像条件下探讨了模拟前端的事件和输出计数率之间的关系,用于诊断成像条件,以获得有前途的多Si基于的设计。假设现实输入X射线频谱,在时域中建模放大器的输入。基于多Si薄膜晶体管的电路模拟用于确定作为输入计数率,能量辨别阈值和操作条件的函数的结果输出计数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号