首页> 外文会议>ASME international mechanical engineering congress and exposition >MODELING PHASE TRANSFORMATION KINETICS AND THEIR EFFECT ON HARDNESS AND HARDNESS DEPTH IN LASER HARDENING OF HYPOEUTECTOID STEEL
【24h】

MODELING PHASE TRANSFORMATION KINETICS AND THEIR EFFECT ON HARDNESS AND HARDNESS DEPTH IN LASER HARDENING OF HYPOEUTECTOID STEEL

机译:次共析钢激光硬化过程中相变动力学的建模及其对硬度和硬度的影响

获取原文

摘要

Much research has been done to model laser hardening phase transformation kinetics. In that research, assumptions are made about the austenization of the steel that does not translate into accurate hardness depth calculations. The purpose of this paper is to develop an analytical method to accurately model laser hardening phase transformation kinetics of hypoeutectoid steel, accounting for non-homogeneous austenization. The modeling is split into two sections. The first models the transient thermal analysis to obtain temperature time-histories for each point in the workpiece. The second models non-homogeneous austenization and utilizes continuous cooling curves to predict microstructure and hardness. Non-homogeneous austenization plays a significant role in the hardness and hardness depth in the steel. A finite element based three-dimensional thermal analysis in ANSYS is performed to obtain the temperature history on three steel workpieces for laser hardening process with no melting; AISI 1030, 1040 and 1045 steels. This is followed by the determination of microstructural changes due to ferrite and pearlite transformation to austenite during heating and the subsequent austenite to martensite and other diffusional transformations during cooling. Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation is used to track the phase transformations during heating, including the effects of non-homogenous austenitization. The solid state nodal phase transformations during cooling are monitored on the material's digitized Continuous Cooling Transformation (CCT) curve through a user defined input file in ANSYS for all cooling rates within the Heat Affected Zone (HAZ). Material non-linearity is included in the model by including temperature dependent thermal properties for the material. The model predictions for hardness underneath the laser and the HAZ match well with the experimental results published in literature.
机译:已经进行了许多研究来建模激光硬化相变动力学。在该研究中,对钢的奥氏体化做出了假设,但并未转化为精确的硬度深度计算。本文的目的是开发一种分析方法,以准确地模拟次共析钢的激光淬火相变动力学,并考虑到非均质奥氏体化。建模分为两个部分。第一个模型对瞬态热分析进行建模,以获得工件中每个点的温度时程。第二个模型对非均匀奥氏体进行建模,并利用连续的冷却曲线来预测显微组织和硬度。非均匀奥氏体化对钢的硬度和硬度深度起着重要作用。在ANSYS中执行基于有限元的三维热分析,以获取三个钢工件的温度历史记录,以进行不熔化的激光淬火过程; AISI 1030、1040和1045钢。随后确定由于加热过程中铁素体和珠光体转变为奥氏体以及随后的奥氏体转变为马氏体以及在冷却过程中发生其他扩散转变而引起的微观结构变化。 Johnson-Mehl-Avrami-Kolmogorov(JMAK)方程用于跟踪加热过程中的相变,包括非均质奥氏体化的影响。通过ANSYS中用户定义的输入文件,针对热影响区(HAZ)内的所有冷却速率,在材料的数字化连续冷却转变(CCT)曲线上监控冷却期间的固态节点相变。通过包括材料的温度相关热性能,材料非线性包括在模型中。激光和热影响区下面的硬度的模型预测与文献中公布的实验结果非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号