首页> 外文会议>ASME international mechanical engineering congress and exposition >Effect of In-Plane Fiber Tow Waviness Upon the Tensile Strength Characteristics of Fiber Reinforced Composites of Carbon/Epoxy AS4/3501-6
【24h】

Effect of In-Plane Fiber Tow Waviness Upon the Tensile Strength Characteristics of Fiber Reinforced Composites of Carbon/Epoxy AS4/3501-6

机译:平面纤维丝束起伏度对碳/环氧树脂AS4 / 3501-6纤维增强复合材料拉伸强度特性的影响

获取原文

摘要

The purpose of this study was to investigate the strength and effectiveness when induced with 'in-plane fiber tow waviness' in a composite ply of carbon/epoxy AS4/3501-6. Fiber waviness is usually induced by infusion processes and inherent in fabric architectures. Composite structural details like ply drops and ply joints can cause serious fiber misalignment. These are usually dependent on parameters such as ply thickness, percentage of plies dropped, and mold geometry and pressure, and pressure of the resin which slides the dry fibers during the resin transfer molding process. Fiber disorientation due to fiber tow waviness in 'in-plane' direction has been the subject of recent studies on wind turbine blade materials and other aerospace laminates with reports of compression strengths and failure strains that are borderline, depending upon the reinforcement architecture, matrix resin and environment. Waviness is expected to reduce compressive strength due to two primary factors. The fibers may be oriented in such a way that the geometry that results because of the orientation may exacerbate the basic fiber, strand, or layer buckling mode of failure. The waviness could also shift the fiber orientation of the axis of the ply longitudinal direction which eventually results in matrix dominated failures for plies normally orientated in the primary load direction (0°). Both global and local stress & strain values generated by the finite element model were validated by the traditional mechanical methods using ply/local stiffness matrix and global/reduced stiffness matrix. A precise geometry of waviness on different materials was modeled with different wave severity factor and a parametric study was conducted. Three different defects were modeled where the angle of misalignment ranged from 5 to 15 degrees with wavelength ranging from 1 inch to 1.5 inches and amplitude ranging from 0.03 inches to 0.7 inches. This revealed the effect of 'in-plane fiber tow waviness' on the stress distribution and loss of strength in carbon/epoxy AS4/3501-6. The results clearly show that the effect of 'in-plane fiber tow waviness' leads to resin rich areas which causes high stress concentrations and decrease in the strength ratio, ultimately leading to delamination's.
机译:这项研究的目的是研究在碳/环氧树脂AS4 / 3501-6复合层中被“面内纤维丝束起伏”诱导时的强度和有效性。纤维起伏通常是由灌注过程引起的,并且是织物结构所固有的。复合材料的结构细节(如帘布层下落和帘布层接头)可能会导致严重的光纤未对准。这些通常取决于参数,例如层厚度,掉落的百分比,模具的几何形状和压力以及在树脂传递模塑过程中使干纤维滑动的树脂压力。由于纤维丝束在“面内”方向上起伏而引起的纤维取向一直是风力涡轮机叶片材料和其他航空航天层压板研究的主题,其压缩强度和破坏应变处于临界状态,具体取决于增强结构,基体树脂和环境。由于两个主要因素,波纹度会降低抗压强度。纤维可以以这样的方式取向,使得由于该取向而产生的几何形状可以加剧基本的纤维,股线或层屈曲的破坏模式。波纹度还可以改变帘布层纵向轴线的纤维取向,这最终导致通常在主载荷方向(0°)取向的帘布层的基质主导失效。通过传统的机械方法,使用层/局部刚度矩阵和整体/降低刚度矩阵,可以验证有限元模型生成的整体和局部应力与应变值。使用不同的波浪严重度因子对不同材料上的波纹度进行精确的几何建模,并进行了参数研究。对三个不同的缺陷进行了建模,其中未对准的角度范围为5至15度,波长范围为1英寸至1.5英寸,幅度范围为0.03英寸至0.7英寸。这揭示了“面内纤维丝束起伏”对碳/环氧树脂AS4 / 3501-6中应力分布和强度损失的影响。结果清楚地表明,“面内纤维丝束起伏”的作用导致树脂富集区域,导致高应力集中和强度比降低,最终导致分层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号