首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >Effect of In-Plane Fiber Tow Waviness Upon the Tensile Strength Characteristics of Fiber Reinforced Composites of Carbon/Epoxy AS4/3501-6
【24h】

Effect of In-Plane Fiber Tow Waviness Upon the Tensile Strength Characteristics of Fiber Reinforced Composites of Carbon/Epoxy AS4/3501-6

机译:平面纤维牵引伏特对碳/环氧树脂纤维增强复合材料的拉伸强度特性的影响碳/环氧树脂AS4 / 3501-6

获取原文

摘要

The purpose of this study was to investigate the strength and effectiveness when induced with 'in-plane fiber tow waviness' in a composite ply of carbon/epoxy AS4/3501-6. Fiber waviness is usually induced by infusion processes and inherent in fabric architectures. Composite structural details like ply drops and ply joints can cause serious fiber misalignment. These are usually dependent on parameters such as ply thickness, percentage of plies dropped, and mold geometry and pressure, and pressure of the resin which slides the dry fibers during the resin transfer molding process. Fiber disorientation due to fiber tow waviness in 'in-plane' direction has been the subject of recent studies on wind turbine blade materials and other aerospace laminates with reports of compression strengths and failure strains that are borderline, depending upon the reinforcement architecture, matrix resin and environment. Waviness is expected to reduce compressive strength due to two primary factors. The fibers may be oriented in such a way that the geometry that results because of the orientation may exacerbate the basic fiber, strand, or layer buckling mode of failure. The waviness could also shift the fiber orientation of the axis of the ply longitudinal direction which eventually results in matrix dominated failures for plies normally orientated in the primary load direction (0°). Both global and local stress & strain values generated by the finite element model were validated by the traditional mechanical methods using ply/local stiffness matrix and global/reduced stiffness matrix. A precise geometry of waviness on different materials was modeled with different wave severity factor and a parametric study was conducted. Three different defects were modeled where the angle of misalignment ranged from 5 to 15 degrees with wavelength ranging from 1 inch to 1.5 inches and amplitude ranging from 0.03 inches to 0.7 inches. This revealed the effect of 'in-plane fiber tow waviness' on the stress distribution and loss of strength in carbon/epoxy AS4/3501-6. The results clearly show that the effect of 'in-plane fiber tow waviness' leads to resin rich areas which causes high stress concentrations and decrease in the strength ratio, ultimately leading to delamination's.
机译:本研究的目的是当与“平面内的纤维丝束波纹”中的碳/环氧树脂AS4 / 3501-6的复合层片诱导调查强度和有效性。纤维起伏通常通过输注过程诱导的并在织物结构所固有的。像帘布层滴和帘布层关节复合结构细节会导致严重的纤维未对准。这些通常是依赖于参数,如层的厚度,层的百分比下降,和模具的几何形状和压力,以及其中,树脂传递模塑工艺过程中滑动的干纤维的树脂的压力。纤维定向障碍由于“面内”方向上的纤维丝束波纹一直最近关于风力涡轮机叶片的材料,并与压缩强度和失效菌株的报道其他航空层压材料的研究,是边界线,这取决于所述加强结构,基体树脂的主题和环境。波纹有望降低抗压强度由于两个主要因素。纤维可以以这样的方式,该几何形状,由于取向的结果可能会加剧基本纤维,链,或失败的层屈曲模式取向。波纹也可能会改变所述帘布层长度方向这最终导致在用于正常地在主载荷方向(0°)定向的帘布层矩阵为主故障的轴线的纤维取向。通过有限元模型产生全局和局部应力应变&值是通过使用帘布层/局部刚度矩阵和全局/降低刚度矩阵的传统的机械方法证实。在不同材料上的波纹的精确几何形状,用不同的波严重性因子建模,并进行参数研究。三种不同的缺陷进行建模,其中未对准的角度从5度至15度范围用波长范围从1英寸到1.5英寸,并且振幅从0.03英寸到0.7英寸。这揭示“在平面内的纤维丝束波纹”对碳纤维/环氧树脂AS4 / 3501-6强度的应力分布和损失的效果。结果清楚地表明,“面内的纤维丝束波纹”引线的效果树脂引起强度比率高应力集中和减小丰富的区域,最终导致脱层的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号