首页> 外文会议>ASME international mechanical engineering congress and exposition >MODELING AND SIMULATIONS OF TRANSFORMATION AND TWINNING INDUCED PLASTICITY IN ADVANCED HIGH STRENGTH AUSTENITIC STEELS
【24h】

MODELING AND SIMULATIONS OF TRANSFORMATION AND TWINNING INDUCED PLASTICITY IN ADVANCED HIGH STRENGTH AUSTENITIC STEELS

机译:先进高强度奥氏体钢中相变和孪生诱发塑性的建模与模拟

获取原文

摘要

The current research work is focused on the development of a combined micromechanical model of transformation and twinning induced plasticity mechanisms in austenite based high Mn steels. Both mechanisms are combined by incorporating transformation in twinning based crystal plasticity model. Initially, mechanical twinning is incorporated in slip based crystal plasticity model. Afterwards, transformation phenomenon (austenite to martensite) is included in the developed slip and twin based crystal plasticity model. The kinematics of the mechanisms is developed by defining elastic, plastic, and transformation deformation gradients. These deformation gradients are then used to calculate stress tensors. The constitutive equations in terms of integration algorithm are implemented in ABAQUS as a user-defined subroutine. Three dimensional finite element model of single and polycrystal austenite are developed. Single austenite crystal is represented by one finite element while the behavior of polycrystal austenite is estimated through 500 grains. The orientation of each grain is defined through Euler angles. The performance of the model is evaluated through finite element simulations in order to predict the elastic-plastic and transformation behaviors of single and polycrystal austenite under different loading conditions i.e. uniaxial tension and simple shear. The developed model is in good agreement with published literature. In simple shear, prominent difference in stress magnitude is found once twinning mode is incorporated in slip and transformation. This difference has significant magnitude in case of polycrystal austenite. This shows substantial advantage (in terms of strength and formabil-ity) of incorporating mechanical twinning along with slip and transformation.
机译:当前的研究工作集中在奥氏体基高锰钢的相变和孪生诱导塑性机制的组合微力学模型的开发上。通过将转换合并到基于孪生的晶体可塑性模型中,将两种机制结合在一起。最初,将机械孪晶结合到基于滑移的晶体可塑性模型中。之后,相变现象(奥氏体到马氏体)被包括在已开发的滑移和双基晶体可塑性模型中。通过定义弹性,塑性和变形变形梯度来开发机构的运动学。然后将这些变形梯度用于计算应力张量。在积分算法方面的本构方程在ABAQUS中作为用户定义的子例程实现。建立了单晶和多晶奥氏体的三维有限元模型。单奥氏体晶体由一个有限元表示,而多晶奥氏体的行为可通过500个晶粒来估计。每个晶粒的方向是通过欧拉角定义的。通过有限元模拟评估模型的性能,以预测单晶和多晶奥氏体在不同载荷条件(即单轴拉伸和简单剪切)下的弹塑性和相变行为。所开发的模型与已发表的文献非常吻合。在简单剪切中,一旦在滑移和转变中合并了孪生模式,就会发现应力大小存在显着差异。在多晶奥氏体的情况下,这种差异具有明显的大小。这显示出结合机械孪晶以及滑移和变形的实质优势(就强度和可塑性而言)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号