首页> 外文会议>ASME international mechanical engineering congress and exposition >MECHATRONICS IMPLEMENTATION OF INVERSE DYNAMICS-BASED CONTROLLER FOR AN OFF-ROAD UGV
【24h】

MECHATRONICS IMPLEMENTATION OF INVERSE DYNAMICS-BASED CONTROLLER FOR AN OFF-ROAD UGV

机译:越野UGV的基于逆动力学的控制器的机电实现

获取原文

摘要

This paper presents a project developed at the University of Alabama at Birmingham (UAB) aimed to design, implement, and test an off-road Unmanned Ground Vehicle (UGV) with individually controlled four drive wheels that operate in stochastic terrain conditions. An all-wheel drive off-road UGV equipped with individual electric dc motors for each wheel offers tremendous potential to control the torque delivered to each individual wheel in order to maximize UGV slip efficiency by minimizing slip power losses. As previous studies showed, this can be achieved by maintaining all drive wheels slippages the same. Utilizing this approach, an analytical method to control angular velocities of all wheels was developed to provide the same slippages of the four wheels. This model-based method was implemented in an inverse dynamics-based control algorithm of the UGV to overcome stochastic terrain conditions and minimize wheel slip power losses and maintain a given velocity profile. In this paper, mechanical and electrical components and control algorithm of the UGV are described in order to achieve the objective. Optical encoders built-in each dc motor are used to measure the actual angular velocity of each wheel. A fifth wheel rotary encoder sensor is attached to the chassis to measure the distance travel and estimate the longitudinal velocity of the UGV. In addition, the UGV is equipped with four electric current sensors to measure the current draw from each dc motor at various load conditions. Four motor drivers are used to control the dc motors using National Instruments single-board RIO controller. Moreover, power system diagrams and controller pinout connections are presented in detail and thus explain how all these components are integrated in a mechatronic system. The inverse dynamics control algorithm is implemented in real-time to control each dc motors individually. The integrated mechatronics system is distinguished by its robustness to stochastic external disturbances as shown in the previous papers. It also shows a promising adaptability to disturbances in wheel load torques and changes in stochastic terrain properties. The proposed approach, modeling and hardware implementation opens up a new way to the optimization and control of both unmanned ground vehicle dynamics and vehicle energy efficiency by optimizing and controlling individual power distribution to the drive wheels.
机译:本文介绍了由阿拉巴马大学伯明翰分校(UAB)开发的项目,该项目旨在设计,实施和测试带有在随机地形条件下运行的独立控制的四个驱动轮的越野无人地面车辆(UGV)。全轮驱动越野UGV为每个车轮配备了单独的直流电动机,具有巨大的潜力来控制传递给每个单独车轮的扭矩,从而通过最大程度地降低打滑功率损耗来最大程度地提高UGV打滑效率。如先前的研究所示,这可以通过使所有驱动轮打滑保持相同来实现。利用这种方法,开发了一种控制所有车轮角速度的分析方法,以提供四个车轮相同的滑移率。这种基于模型的方法在UGV的基于逆动力学的控制算法中实现,以克服随机地形条件并最大程度地降低车轮滑移功率损失并保持给定的速度分布。为了达到目的,本文描述了UGV的机电部件和控制算法。每个直流电动机内置的光学编码器用于测量每个车轮的实际角速度。第五轮旋转编码器传感器连接至底盘,以测量距离行程并估算UGV的纵向速度。此外,UGV配备了四个电流传感器,以测量各种负载条件下每个直流电动机的电流消耗。使用National Instruments单板RIO控制器,四个电机驱动器用于控制直流电机。此外,详细介绍了电源系统图和控制器引脚连接,从而说明了如何将所有这些组件集成到机电系统中。逆动力学控制算法是实时实现的,可以分别控制每个直流电动机。集成机电一体化系统以其对随机外部干扰的鲁棒性而著称,如先前的论文所示。它还显示出对车轮负载扭矩干扰和随机地形特性变化的有希望的适应性。所提出的方法,建模和硬件实现通过优化和控制驱动轮的各个动力分配,为优化和控制无人地面车辆动力学和车辆能源效率开辟了一条新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号