首页> 外文会议>ASME power conference joint with ICOPE-17 >SORPTION ENHANCED STEAM REFORMING OF PROPANE USING CALCIUM LOOPING
【24h】

SORPTION ENHANCED STEAM REFORMING OF PROPANE USING CALCIUM LOOPING

机译:钙环对丙烷的吸附增强蒸汽重整

获取原文

摘要

Sorption enhanced steam reforming of propane over Ni catalyst using in-situ carbonation of CaO provides both carbon capture, and enhanced H_2 content in the product gas, and enhanced carbon conversion efficiency. Choosing propane over methane for sorption enhanced reforming provides easier fuel handling capability and higher throughput of H_2 per unit volume of fuel. Such advantages help in building domestic scale hydrogen production source for sustainable energy production. The effect of propane addition on CaO carbonation and poisoning possibilities in reformation integrated with CO_2 capture is explored in a packed-bed reactor. The motivation of propane addition is to model petroleum gas to address the feasibility of carbon capture integration with hydrocarbon reforming processes. Initially, different partial pressures of steam and propane will be used to study the kinetic parameters in a fixed bed reactor at different temperatures. The formed kinetic models will be used to compare the integrated CO_2 capture results and the thermodynamic results to evaluate the efficiencies of such process. Higher temperatures provide better conversion efficiency, but the equilibrium of CaO carbonation suggests steam reforming enhancement and CO_2 capture needs to be below 1073 K in order to avoid the backward reaction of CaCO_3 releasing CO_2. The balance between endothermic reformation reaction and exothermic water-gas shift and CaO carbonation reactions is the optimizing parameter for improved conversion to high H_2 content. Temperatures higher than 873 K provided higher conversion with lower CO_2 capture and H_2 content while lower than 873 K provided lower methane conversion and higher CO_2 capture and H_2 content. Increase in steam to carbon ratio increased CH_4 conversion and reduced CO content without affecting sorption with no further reduction in CO_2 observed for most of the sorption cycle. These results supplement the available data in the literature to provide superior reaction conditions to improve the process efficiency in hydrogen production.
机译:使用CaO的原位碳酸化作用,通过Ni催化剂在丙烷上进行吸附增强的丙烷水蒸气重整,既可以捕获碳,又可以提高产物气体中的H_2含量,并且可以提高碳转化效率。选择丙烷而不是甲烷进行吸附重整可提供更轻松的燃料处理能力和更高的每单位体积燃料H_2吞吐量。这些优势有助于建立国内规模的氢气生产源,以实现可持续的能源生产。在填充床反应器中探索了丙烷添加对CaO碳酸化和重整与CO_2捕集相结合中毒可能性的影响。丙烷添加的动机是对石油气进行建模,以解决碳捕集与烃重整过程整合的可行性。最初,将使用蒸汽和丙烷的不同分压来研究固定床反应器在不同温度下的动力学参数。形成的动力学模型将用于比较整合的CO_2捕获结果和热力学结果,以评估该过程的效率。较高的温度可提供更好的转化效率,但CaO碳酸化的平衡表明,蒸汽重整的增强和CO_2的捕集需要低于1073 K,以避免CaCO_3释放CO_2的逆反应。吸热重整反应与放热水煤气变换和CaO碳酸化反应之间的平衡是优化转化为高H_2含量的最佳参数。高于873 K的温度可提供较高的转化率,并具有较低的CO_2捕获量和H_2含量,而低于873 K的温度可提供较低的甲烷转化率和较高的CO_2捕获量和H_2含量。蒸汽与碳之比的增加增加了CH_4的转化率,减少了CO的含量,而又不影响吸附,并且在大多数吸附循环中均未观察到CO_2的进一步减少。这些结果补充了文献中的可用数据,以提供优越的反应条件,以提高制氢的工艺效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号