首页> 外文会议>Canadian Society for Civil Engineering annual conference >NUMERICAL MODELLING OF SMOULDERING COMBUSTION TO OPTIMIZE EX SITU SOIL TREATMENT SYSTEM DESIGN
【24h】

NUMERICAL MODELLING OF SMOULDERING COMBUSTION TO OPTIMIZE EX SITU SOIL TREATMENT SYSTEM DESIGN

机译:优化局部烟气处理系统设计的烟气燃烧数值模拟

获取原文

摘要

There is widespread soil contamination at thousands of cites in Canada resulting from the historical improper storage and disposal of industrial liquids (Story et al., 2014). Large financial resources are allocated to remediation efforts due to the human and environmental health risks associated with exposure to such contamination, with over $582 million CAN spent on remediation in 2014-15 by the Canadian government alone (Treasury Board of Canada, 2016). Our scientific understanding of site remediation has evolved greatly over the past decades and it is now widely accepted that remediation of the contaminant source zone is necessary to achieve a high level of long-term remediation (Kueper et al., 2014). Non-aqueous phase liquids, or NAPLS, are one of the most prevalent contaminants at contaminated sites and are challenging to remediate due to their highly recalcitrant nature (Kueper et al., 2003). Although many remediation technologies have been developed over the past decades, the challenge in source zone remediation of NAPLs persists. The application of smouldering combustion to treat NAPL contaminated soils has been proven as an effective technology with both the laboratory experiments and applied in situ at a field site (Switzer et al., 2009, Pironi et al., 2011, Switzer et al, 2014, Salman et al., 2015, Scholes et al., 2015). This technology, titled "Self-sustaining treatment for active remediation", or STAR, utilizes the high calorific value of NAPLs to ignite and sustain a smouldering oxidation reaction, effectively destroying the contaminant in the process. A phenomenological model developed by MacPhee et al. (2012) uniquely combined a multiphase flow model, perimeter expansion model, and analytical expression for the forward smouldering front velocity. This model is able to predict the propagation of the reaction front in response to the interplay between a heterogeneous distribution of permeability and the time-dependent distribution of air flux. After subsequent calibration by Hasan et al. (2014), the model was shown to correctly predict the ultimate extent and time of remediation during treatment for 2D lab scale experiments. Recently, STAR is being developed as an ex-situ treatment for above ground soils and for sludge intentionally mixed with sand (STARx). Two configurations, or modes of application, are being evaluated: a metal reactor and a "hot pad/soil pile". This work presents the results of calibration and optimization simulations in support of the engineering design process. Model calibration against intermediate pilot tests (~ 2 m3) was first conducted to ensure the rate of treatment and the final position and time of extinction of the smouldering front were modelled correctly. The calibrated model was then used to complete a suite of simulations to determine the effects of key system design parameters on the extent and time required for remediation. Contaminant pack configuration, NAPL saturation, airflow rate, system dimensions, the influence of heterogeneity, and the effects of impermeable walls and clean sand caps were investigated. The influence of scale was also explored by simulating intermediate scale, large pilot scale, and full field scale applications. The findings from these simulations will be used to influence the optimal STARx design, maximizing NAPL destruction rate and minimizing the volume of untreated soil. The final design is expected to be tested at the field pilot scale, in 2016.
机译:由于历史上对工业液体的不适当存储和处置,在加拿大成千上万的城市中普遍存在土壤污染(Story等,2014)。由于与暴露于此类污染相关的人类和环境健康风险,大量的财政资源被分配用于补救工作,仅加拿大政府就在2014-15年度花费了超过5.82亿加元用于补救(加拿大财政部,2016)。在过去的几十年中,我们对场地修复的科学理解有了长足的发展,现在,为实现高水平的长期修复,对污染物源区域的修复是必不可少的(Kueper等人,2014)。非水相液体或NAPLS是受污染场所中最普遍的污染物之一,并且由于其难降解的特性而难以修复(Kueper等人,2003年)。尽管在过去的几十年中已经开发了许多修复技术,但是NAPL的源区修复仍然面临着挑战。阴燃燃烧处理NAPL污染土壤已被证明是一种有效的技术,无论是实验室实验还是现场应用(Switzer等人,2009; Pironi等人,2011; Switzer等人,2014) ,Salman等人,2015; Scholes等人,2015)。这项名为“主动修复的自我维持处理”或STAR的技术利用了NAPL的高热值来点燃并维持阴燃的氧化反应,从而有效地破坏了过程中的污染物。 MacPhee等人开发的现象学模型。 (2012年)独特地组合了多相流模型,周向扩展模型和解析表达式,用于正向阴燃的前沿速度。该模型能够响应于渗透率的非均质分布与气流的时间相关分布之间的相互作用,预测反应前沿的传播。经过Hasan等人的后续校准。 (2014年),该模型显示出可正确预测2D实验室规模实验的治疗过程中修复的最终程度和时间。最近,STAR正在开发,用于地上土壤和故意与沙子混合的污泥(STARx)的异地处理。正在评估两种配置或应用模式:金属反应堆和“热垫/土壤堆”。这项工作提出了支持工程设计过程的校准和优化模拟的结果。首先进行针对中试测试(〜2 m3)的模型校准,以确保正确地模拟处理速度以及闷烧锋线消光的最终位置和时间。然后,将经过校准的模型用于完成一系列仿真,以确定关键系统设计参数对修复所需的程度和时间的影响。研究了污染物包的配置,NAPL饱和度,气流速率,系统尺寸,非均质性的影响以及防渗墙和干净的沙帽的影响。还通过模拟中间规模,大型试验规模和全领域规模应用来探索规模的影响。这些模拟的结果将用于影响最佳STARx设计,最大化NAPL破坏率并最小化未处理土壤的体积。最终设计有望在2016年以现场试验规模进行测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号