首页> 外文会议>Canadian Society for Civil Engineering annual conference >NUMERICAL MODELLING OF SMOULDERING COMBUSTION TO OPTIMIZE EX SITU SOIL TREATMENT SYSTEM DESIGN
【24h】

NUMERICAL MODELLING OF SMOULDERING COMBUSTION TO OPTIMIZE EX SITU SOIL TREATMENT SYSTEM DESIGN

机译:闷烧燃烧的数值模型优化EX原位土壤处理系统设计

获取原文

摘要

There is widespread soil contamination at thousands of cites in Canada resulting from the historical improper storage and disposal of industrial liquids (Story et al., 2014). Large financial resources are allocated to remediation efforts due to the human and environmental health risks associated with exposure to such contamination, with over $582 million CAN spent on remediation in 2014-15 by the Canadian government alone (Treasury Board of Canada, 2016). Our scientific understanding of site remediation has evolved greatly over the past decades and it is now widely accepted that remediation of the contaminant source zone is necessary to achieve a high level of long-term remediation (Kueper et al., 2014). Non-aqueous phase liquids, or NAPLS, are one of the most prevalent contaminants at contaminated sites and are challenging to remediate due to their highly recalcitrant nature (Kueper et al., 2003). Although many remediation technologies have been developed over the past decades, the challenge in source zone remediation of NAPLs persists. The application of smouldering combustion to treat NAPL contaminated soils has been proven as an effective technology with both the laboratory experiments and applied in situ at a field site (Switzer et al., 2009, Pironi et al., 2011, Switzer et al, 2014, Salman et al., 2015, Scholes et al., 2015). This technology, titled "Self-sustaining treatment for active remediation", or STAR, utilizes the high calorific value of NAPLs to ignite and sustain a smouldering oxidation reaction, effectively destroying the contaminant in the process. A phenomenological model developed by MacPhee et al. (2012) uniquely combined a multiphase flow model, perimeter expansion model, and analytical expression for the forward smouldering front velocity. This model is able to predict the propagation of the reaction front in response to the interplay between a heterogeneous distribution of permeability and the time-dependent distribution of air flux. After subsequent calibration by Hasan et al. (2014), the model was shown to correctly predict the ultimate extent and time of remediation during treatment for 2D lab scale experiments. Recently, STAR is being developed as an ex-situ treatment for above ground soils and for sludge intentionally mixed with sand (STARx). Two configurations, or modes of application, are being evaluated: a metal reactor and a "hot pad/soil pile". This work presents the results of calibration and optimization simulations in support of the engineering design process. Model calibration against intermediate pilot tests (~ 2 m3) was first conducted to ensure the rate of treatment and the final position and time of extinction of the smouldering front were modelled correctly. The calibrated model was then used to complete a suite of simulations to determine the effects of key system design parameters on the extent and time required for remediation. Contaminant pack configuration, NAPL saturation, airflow rate, system dimensions, the influence of heterogeneity, and the effects of impermeable walls and clean sand caps were investigated. The influence of scale was also explored by simulating intermediate scale, large pilot scale, and full field scale applications. The findings from these simulations will be used to influence the optimal STARx design, maximizing NAPL destruction rate and minimizing the volume of untreated soil. The final design is expected to be tested at the field pilot scale, in 2016.
机译:加拿大历史不正当储存和处理工业液体(Story等,2014)的历史不正当的储存和处置,有普遍的土壤污染。由于与暴露于此类污染有关的人和环境健康风险,额外的财务资源被分配给修复努力,超过5.82亿美元可以在加拿大政府(加拿大财政部,2016年加拿大财政委员会)在2014-15美元上花费了超过5.82亿美元。在过去的几十年里,我们对现场修复的科学了解已经发展得很大,现在广泛接受了污染物源区的修复,以实现高水平的长期修复(Kueper等,2014)。非水相液体或NaPLS是污染部位中最普遍的污染物之一,并且由于它们高度顽固性(Kueper等,2003)而挑战。虽然在过去的几十年中已经发展了许多修复技术,但是源区的挑战仍然存在源区的修复。闷燃燃烧治疗Napl受污染的土壤已被证明是一种有效的技术,具有实验室实验,并在田地网站上以原位应用(瑞士,2009,Pironi等,2011年,瑞士et al,2014 ,Salman等人,2015年,Scholes等,2015)。这项技术标题为“用于活性修复”或明星的“自我维持治疗”,利用NaPLS的高热值来点燃和维持闷烧的氧化反应,有效地破坏过程中的污染物。 Macphee等人开发的现象学模型。 (2012)唯一地组合了多相流模型,周边膨胀模型和前向闷烧前速度的分析表达。该模型能够响应于渗透性的异构分布与空气通量的时间依赖性分布之间的相互作用来预测反应前沿的传播。随后校准Hasan等人。 (2014),该模型显示在治疗2D实验室规模实验期间正确预测修复的最终范围和时间。最近,明星正在开发作为地上土壤的前原位处理,以及与砂(Starx)有意混合的污泥。正在评估两种配置或应用模式:金属反应器和“热垫/土坯”。这项工作提出了支持工程设计过程的校准和优化模拟结果。首先进行模型校准中间导频测试(〜2M3),以确保正确的处理速度和最终位置和灭绝的灭绝的最终位置和时间正确。然后使用校准的模型来完成一套模拟,以确定关键系统设计参数对修复所需程度和时间的影响。研究了污染物包配置,NaPL饱和度,气流,系统尺寸,异质性的影响以及不透水墙壁和清洁砂帽的影响。还通过模拟中间规模,大型飞行规模和全场比例应用来探索规模的影响。这些模拟的发现将用于影响最佳的STARX设计,最大限度地提高NAPL破坏率并使未经处理的土壤的体积最小化。最终设计预计将在2016年以现场试点规模进行测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号