【24h】

Transverse 2D gliding arc modeling

机译:横向2D滑行弧建模

获取原文

摘要

Summary form only given. There seems to be growing interest in the numerical simulation of the Gliding Arc (GA) discharge1,2. Results published so far have been 2D simulations of two geometries: (1) axisymmetric stationary discharge channel and (2) “plasma sheet” immersed into 2D laminar gas flow between two diverging electrodes infinite in the third dimension. These approaches however, do not reveal GA interaction with the gas flow, which can be addressed using transverse 2D modeling presented in this paper. GA moves slower than the gas flow and when discharge channel temperature is in the order of 1000 K, transverse gas flow results in strong interaction between the discharge and gas flow, i.e. gas flow partially penetrates and cools the discharge very efficiently, as it accelerates and expands because of decrease in density. On the other hand, most of the gas flows around the discharge and forms so-called Karman vortex street. Thus, presence of discharge inside the gas flow significantly disturbs both of them. Our simulation shows that discharge moves slower than the gas flow even without accounting for interaction with electrodes, because initially a hot stationary discharge channel forms inside cold gas flow. Sudden formation of this stationary channel stops gas in front of it, and therefore acceleration of the discharge channel is not as fast as expected. We used Fluent© with a subroutine that calculates local heat release due to electric current using look-up table where electric conductivity of argon was calculated as function of the reduced electric field and gas temperature. This table was developed using BOLSIG+ and equilibrium electric conductivity of argon dependency on temperature. Initially, slowly increasing electric field was applied to a small conductive spot in a rectangular domain with upward laminar gas flow until the total current value through the spot reached a predetermined value. Power release in each cell of the domain and resulting increase in temperature were computed and used by Fluent© for modified flow calculation. Repeating such iterations revealed peculiarities of the discharge-flow interaction. We hope that demonstrated results will help other researchers involved in development of GA modeling approaches and highlight the importance of gas-discharge interaction.
机译:仅提供摘要表格。滑行弧(GA)放电1,2的数值模拟似乎越来越引起人们的兴趣。到目前为止,已发表的结果是对两种几何结构的二维模拟:(1)轴对称固定放电通道;(2)“等离子片”浸没在二维无限大的两个发散电极之间的二维层流中。但是,这些方法并未揭示GA与气流的相互作用,可以使用本文介绍的横向2D建模解决该问题。 GA的移动速度比气流慢,并且当排气道温度在1000 K左右时,横向气流会导致排气和气流之间发生强烈的相互作用,即,气流会加速和加速排气,从而部分有效地渗透并冷却排气。由于密度降低而膨胀。另一方面,大多数气体在放电周围流动并形成所谓的卡曼涡街。因此,气流内部的放电的存在显着干扰了它们两者。我们的仿真显示,即使不考虑与电极的相互作用,放电运动也比气流慢,这是因为最初在冷气流内部会形成一个固定的热放电通道。该固定通道的突然形成会阻止其前面的气体,因此排出通道的加速不如预期的那样快。我们将Fluent©与一个子例程一起使用,该子例程使用查找表计算由于电流导致的局部放热,在该查找表中,氩气的电导率是根据降低的电场和气体温度计算的。该表是使用BOLSIG +和氩气的平衡电导率随温度变化而开发的。最初,缓慢增加的电场被施加到矩形层域中的一个小的导电点上,并具有向上的层流,直到通过该点的总电流值达到预定值为止。计算了域中每个单元的功率释放以及由此导致的温度升高,并通过Fluent©将其用于修改后的流量计算。重复这样的迭代揭示了排出流相互作用的特殊性。我们希望证明的结果将有助于其他参与GA建模方法开发的研究人员,并强调气体放电相互作用的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号