首页> 外文会议>AIAA space and astronautics forum and exposition >Affordable Development and Demonstration of a Small NTR Engine and Stage: How Small is Big Enough?
【24h】

Affordable Development and Demonstration of a Small NTR Engine and Stage: How Small is Big Enough?

机译:小型NTR引擎和阶段的价格合理的开发和演示:大到足够小?

获取原文

摘要

The Nuclear Thermal Rocket (NTR) derives its energy from fission of uranium-235 atoms contained within fuel elements that comprise the engine's reactor core. It generates high thrust and has a specific impulse potential of ~900 seconds - a 100% increase over today's best chemical rockets. The Nuclear Thermal Propulsion (NTP) project, funded by NASA's AES program, includes five key task activities: (1) Recapture, demonstration, and validation of heritage graphite composite (GC) fuel (selected as the "Lead Fuel" option); (2) Engine Conceptual Design; (3) Operating Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an Affordable Development Strategy. During FY '14, a preliminary DDT&E plan and schedule for NTP development was outlined by GRC, DOE and industry that involved significant system-level demonstration projects that included GTD tests at the NNSS, followed by a FTD mission. To reduce cost for the GTD tests and FTD mission, small NTR engines, in either the 7.5 or 16.5 klbr thrust class, were considered. Both engine options used GC fuel and a "common" fuel element (FE) design. The small ~7.5 klbr "criticality-limited" engine produces -157 megawatts of thermal power (MWt) and its core is configured with parallel rows of hexagonal-shaped FEs and tie tubes (TTs) with a FE to TT ratio of ~1:1. The larger ~16.5 klbr Small Nuclear Rocket Engine (SNRE), developed by LANL at the end of the Rover program, produces ~367 MWt and has a FE to TT ratio of ~2:1. Although both engines use a common 35 inch (~89 cm) long FE, the SNRE's larger diameter core contains ~300 more FEs needed to produce an additional 210 MW_t of power. To reduce the cost of the FTD mission, a simple "1-burn" lunar flyby mission was considered to reduce the LF_2 propellant loading, the stage size and complexity. Use of existing and flight proven liquid rocket and stage hardware (e.g., from the RL10B-2 engine and Delta Cryogenic Second Stage) was also maximized to further aid affordability. This paper examines the pros and cons of using these two small engine options, including their potential to support future human exploration missions to the Moon, near Earth asteroids, and Mars, and recommends a preferred size. It also provides a preliminary assessment of the key activities, development options, and schedule required to affordably build, ground test and fly a small NTR engine and stage within a 10-year timeframe.
机译:核热火箭(NTR)的能量来自包含在构成发动机反应堆核心的燃料元件中的235铀原子的裂变。它产生高推力,具有约900秒的特定脉冲潜能-与当今最好的化学火箭相比增加了100%。由NASA AES计划资助的核热推进(NTP)项目包括五个关键任务活​​动:(1)捕获,演示和验证传统石墨复合(GC)燃料(被选作“铅燃料”选项); (2)发动机概念设计; (3)运行要求定义; (4)确定价格合理的地面测试方案; (五)制定负担得起的发展战略。在14财年期间,GRC,DOE和工业界概述了NTP开发的DDT&E初步计划和时间表,其中涉及重大的系统级演示项目,其中包括在NNSS上进行GTD测试,然后进行FTD任务。为了降低GTD测试和FTD任务的成本,考虑了7.5或16.5 klbr推力级的小型NTR发动机。两种发动机选件均使用GC燃料和“通用”燃料元件(FE)设计。约7.5千瓦的小型“临界极限”发动机可产生-157兆瓦的热能(MWt),其核心配置有平行排的六边形FE和拉力管(TT),FE与TT之比约为1: 1。 LANL在Rover计划结束时开发的更大的〜16.5 klbr小型核动力发动机(SNRE)产生了〜367 MWt,且FE与TT的比率为〜2:1。尽管两个引擎都使用一个共同的35英寸(〜89厘米)长的有限元,但SNRE的大直径铁心包含额外的〜300个有限元,以产生额外的210 MW_t的功率。为了减少FTD任务的成本,考虑了一种简单的“一次燃烧”登月飞行任务,以减少LF_2推进剂的装载量,阶段的大小和复杂性。还充分利用了现有的和经过飞行验证的液体火箭和级硬件(例如,从RL10B-2发动机和Delta Cryogenic Second Stage获得的),以进一步提高负担能力。本文探讨了使用这两种小型发动机选件的利弊,包括它们支持未来人类探索月球,接近地球小行星和火星的潜力,并推荐了一种首选的尺寸。它还提供了对关键活动,开发选项和时间表的初步评估,以合理地建造,地面测试和驾驶小型NTR发动机,并在10年的时间内完成阶段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号