【24h】

DEVELOPMENT OF A DIAMOND MICROFLUIDICS-BASED INTRA-CHIP COOLING TECHNOLOGY FOR GAN

机译:基于金刚石微流控的芯片内部冷却技术的开发

获取原文

摘要

GaN on Diamond has been demonstrated to enable notable increases in RF power density without impacting High Electron Mobility Transistor (HEMT) peak junction temperature. However, Monolithic Microwave Integrated Circuits (MMICs) fabricated using GaN on Diamond substrates are subject to the same packaging thermal limitations as their GaN on SiC counterparts. Therefore, efforts to exploit GaN on Diamond to achieve substantial increases in MMIC power are stymied by external packaging thermal resistances that characterize the current "remote cooling" paradigm. This paper explores an intra-chip cooling alternative to the "remote cooling" paradigm, eliminating various heat spreader, heat sink and thermal interface layers in favor of integral microfluidic cooling in close proximity to the device junction. We describe an intra-chip cooling structure comprised of GaN on Diamond with integral micro-channels fed using a Si fluid distribution manifold. This structure exploits GaN on Diamond substrate technology to support increased HEMT areal power density while employing diamond microfluidics to affect scalable, low thermal resistance die-level heat removal. Thermal-electrical-mechanical co-design of integrated circuit (IC) features is performed to optimize conjugate heat transfer performance and manage the electrical and mechanical impacts associated with the presence of fluidic cooling near the electrically active region of the device. Through this, MMICs with significantly greater RF output than typical of the current state-of-the-art (SoA), dissipating die and HEMT heat fluxes in excess of 1 kW/cm~2 and 30 kW/cm~2, respectively, can be operated with junction temperatures that support reliable operation. The modeling, simulation and micro-fabrication results presented here demonstrate the potential of diamond microfluidics-based intra-chip cooling as a means to alleviate thermal impediments to exploitation of the full electromagnetic potential of GaN.
机译:金刚石上的GaN已被证明可以显着提高RF功率密度,而不会影响高电子迁移率晶体管(HEMT)的峰值结温。但是,在金刚石基板上使用GaN制成的单片微波集成电路(MMIC)与在SiC基板上的GaN一样,受到相同的封装热限制。因此,利用外部封装的热阻阻碍了在Diamond上开发GaN以实现MMIC功率的大幅提高的努力,而外部封装的热阻是当前“远程冷却”范例的特征。本文探讨了一种替代“远程冷却”范式的芯片内冷却替代方法,该方法消除了各种散热器,散热器和热界面层,从而在靠近器件结点处采用了整体微流控冷却。我们描述了一种芯片内冷却结构,该结构由金刚石上的GaN组成,具有使用硅流体分配歧管馈送的完整微通道。这种结构利用金刚石衬底上的GaN技术来支持更高的HEMT面功率密度,同时采用金刚石微流体来影响可扩展的低热阻芯片级散热。执行集成电路(IC)功能的热电机械协同设计,以优化共轭传热性能并管理与设备电活性区域附近流体冷却的存在相关的电气和机械影响。通过这种方式,具有比当前最新技术水平(SoA)的RF输出明显更高的MMIC,耗散芯片和HEMT热通量分别超过1 kW / cm〜2和30 kW / cm〜2,可以在支持可靠运行的结温下运行。此处呈现的建模,仿真和微加工结果证明了基于金刚石微流控技术的芯片内冷却技术的潜力,该技术可减轻热阻,从而充分利用GaN的全部电磁势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号