首页> 外文会议>International topical meeting on nuclear reactor thermal hydraulics >INTERFACE TRACKING SIMULATIONS OF BUBBLY FLOWS IN THE PWR RELEVANT GEOMETRIES
【24h】

INTERFACE TRACKING SIMULATIONS OF BUBBLY FLOWS IN THE PWR RELEVANT GEOMETRIES

机译:PWR相关几何形状中旋气流的界面跟踪模拟

获取原文

摘要

The advances in high performance computing (HPC) have allowed direct numerical simulations (DNS) approach coupled with interface tracking methods (ITM) to perform high fidelity simulations of turbulent bubbly flows in various complex geometries. In this work, we have chosen the geometry of the pressurized water reactor (PWR) core subchannel to perform a set of interface tracking simulations (ITS) with fully resolved turbulence. The presented research utilizes a massively parallel finite-element based code, PHASTA, for the subchannel geometry simulations of bubbly flow turbulence. The main objective for this research is to demonstrate the ITS capabilities in gaining new insight into bubble/turbulence interactions and assisting the development of improved closure laws for computational multiphase fluid dynamics (CMFD). Both single- and two-phase turbulent flows were studied within a PWR subchannel. The analysis of numerical results includes the mean gas and liquid velocity profiles, void fraction distribution and turbulent kinetic energy profiles. Two sets of flow rates and bubble sizes were used in the simulations. The chosen flow rates corresponded to the Reynolds numbers of 29,079 and 80,775 based on channel hydraulic diameter and mean velocity. The finite element unstructured grids utilized for these simulations include 53.8 million and 1.11 billion elements, respectively. This has allowed to fully resolving all the turbulence scales and the deformable interfaces of individual bubbles. For the two-phase flow simulations a 1% bubble volume fraction was used which resulted in 17 and 262 bubbles, respectively. In the larger simulation case the size of the resolved bubbles is 0.65 mm in diameter, and the mesh cell size is about 30 microns. Those large-scale simulations provide new level of details previously unavailable and were enabled by the excellent scaling performance of our two-phase flow solver and access to the state-of-the-art supercomputing resources. The presented simulations used up to 256 thousand processing threads on the IBM BG/Q supercomputer "Mira" (Argonne National Laboratory).
机译:高性能计算(HPC)的进步允许直接数值模拟(DNS)方法与界面跟踪方法(ITM)耦合,以在各种复杂几何形状中执行湍流气泡流的高保真模拟。在这项工作中,我们选择了加压水反应堆(PWR)核心子信道的几何形状,以执行一组接口跟踪模拟(其),具有完全解决的湍流。所提出的研究利用了基于大量的平行的有限元的码,Phasta,用于气泡流动湍流的子信道几何模拟。本研究的主要目标是展示其在泡沫/湍流相互作用的新洞察力中的能力,并协助开发改进的计算多相流体动力学(CMFD)。在PWR子信道中研究了单相和两相湍流流动。对数值结果的分析包括平均气体和液体速度分布,空隙分量分布和湍流动能谱。在模拟中使用两组流速和气泡尺寸。所选择的流速对应于基于通道液压直径和平均速度的雷诺数29,079和80,775。用于这些模拟的有限元非结构化网格分别包括5380万和1110亿元。这允许完全解决所有湍流尺度和单个气泡的可变形界面。对于两相流模拟,使用1%气泡体积分别,其分别导致17和262气泡。在较大的仿真情况下,分离气泡的尺寸直径为0.65mm,网状电池尺寸为约30微米。这些大规模模拟提供了先前不可用的新型详细信息,并通过我们的两相流动件的优异缩放性能,并获得了最先进的超级计算资源。所呈现的模拟在IBM BG / Q超级计算机“Mira”(Argonne National Laboratory)上使用了高达256万个处理线程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号